[1]
S. Park, T. D. Chung, H. C. Kim. Nonenzymatic glucose detection using mesoporous platinum. Analyt. Chem. 75(13) (2003) 3046-3049.
DOI: 10.1021/ac0263465
Google Scholar
[2]
H. J. Hecht, H. M. Kalisz, J. Hendle. et al. Crystal structure of glucose oxidase from aspergillus niger refinedat 2-3 a reslution. J. Molecul. Biol. 229(1) (1993) 153-172.
DOI: 10.1006/jmbi.1993.1015
Google Scholar
[3]
J. N. Anker, W. P. Hall, O. Lyandres, et al. Biosensing with plasmonic nano sensors. Nat. Mater. 7(6) (2008) 442-453.
Google Scholar
[4]
W. S. Baker, J. W. Lone, R. M. Stroud, et al. Sulfur-functionalized carbon aerogels: a new approach for loading high-surface-area electrode nanoarchitectures with precious metal catalysts. J. Non-crystalline Sol. 350 (2004) 80-87.
DOI: 10.1016/j.jnoncrysol.2004.07.088
Google Scholar
[5]
L. Zhang, H. Li, Y. Ni. et al. Porous cuprous oxide mi-crocubes for non-enzymatic amperometric hydrogen perox-ide and glucose sensing. Electrochem. Commun. (2009).
Google Scholar
[6]
Q. Z. Sun, S. Kim. Synthesis of nitrogen-doped graphene supported Pt nanoparticles catalysts and their catalytic activity for fuel cells. Electrochim. Acta. 153 (2015) 566–573.
DOI: 10.1016/j.electacta.2014.11.077
Google Scholar
[7]
T. Mastsue, M. Fujihira, T. Osa. Selective Chlorination with a Cyclodextrin - Modified Electrode. J. Electrochem. Soc. 126(3) (1979) 500-501.
DOI: 10.1149/1.2129071
Google Scholar
[8]
J. M. Zen, Y. S. Ting, Y. Shih. Voltammetric determination of caffeine in beverages using a chemically modified electrode. Analyst, 123(5) (1998) 1145-1147.
DOI: 10.1039/a708360b
Google Scholar
[9]
H. F. Cui, J. S. Ye, W. D. Zhang, et al. Selective and sensitive electrochemical detection of glucose in neutral solution using platinum-lead alloy nanoparticle/carbon nanotube nanocomposites. Analyt. Chim. Acta. 594 (2007) 175-183.
DOI: 10.1016/j.aca.2007.05.047
Google Scholar
[10]
E. Scavetta, S. Stipa, D. Tonelli. Electrodeposition of anickel based hydrotalcite on Ptnano particles for ethanol and glucose sensing. Electrochem. Commun. 9 (2007) 2833-2842.
DOI: 10.1016/j.elecom.2007.10.007
Google Scholar
[11]
J. H. Chen, W. Z. Li, D. Z. Wang, et al. Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon, 40(8) (2007) 1193-1197.
DOI: 10.1016/s0008-6223(01)00266-4
Google Scholar
[12]
S. Walus, C. Barchasz, J. F. Colin, et al. New insight into the working mechanism of lithium-sulfur batteries: in situ and operando X- ray diffraction characterization. Chem. Commun. 49(72) (2013) 7899-7901.
DOI: 10.1039/c3cc43766c
Google Scholar
[13]
J. W. Baynes. Role of oxidative stress in development of complications in diabetes. Diabetes. 40(4) (1991) 405-412.
DOI: 10.2337/diabetes.40.4.405
Google Scholar
[14]
Group UKPDS. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38[J]. BMJ: British Medical Journal, 1998, 703-713.
DOI: 10.1136/bmj.317.7160.703
Google Scholar
[15]
J. X. Wang, X. W. Sun, A. Wei, et al. Zinc oxide nanocomb biosensor for glucose detection. Appl. Phys. Lett. 88(23) (2006) 3106.
Google Scholar