[1]
L. J. Hunag, H. Y. Wang, Y. W. Wu, Properties of the mechanical in controlled low-strength rubber lightweight aggregate concrete (CLSRLC), Constr. Build. Mater. 112 (2016) 1054–1058.
DOI: 10.1016/j.conbuildmat.2016.03.016
Google Scholar
[2]
A. Wongsa, Y. Zaetang, V. Sata, P. Chindaprasirt, Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates, Constr. Build. Mater. 111 (2016) 637–643.
DOI: 10.1016/j.conbuildmat.2016.02.135
Google Scholar
[3]
N. Dulsang, P. Kasemsiri, P. Posi, S. Hiziroglu, P. Chindaprasirt, Characterization of an environment friendly lightweight concrete containing ethyl vinyl acetate waste, Mater. Design 96 (2016) 350–356.
DOI: 10.1016/j.matdes.2016.02.037
Google Scholar
[4]
H. S. Tao, Research for developing aerated concrete by using fly ash with high calcium of Gehua power plant in Hongshan, Wuhan University of Technology, WuHan, (2004).
Google Scholar
[5]
O. Koronthalyova, Moisture storage capacity and microstructure of ceramic brick and autoclaved aerated concrete, Constr. Build. Mater. 25 (2011) 879–885.
DOI: 10.1016/j.conbuildmat.2010.06.098
Google Scholar
[6]
I. B. Topcu, B. Isıkdag, Effect of expanded perlite aggregate on the properties of lightweight concrete, J. Mater. Process. Tech. 204 (2008) 34-38.
Google Scholar
[7]
B. G. Ma, X. Zheng, Study on a new kind of aerated concrete containing efflorescence sand-phosphorus slag–lime, J. Build. Mater. 2(3) (1999) 223–228.
Google Scholar
[8]
Y. Wang, J. Yin, J. C. Chen, C. Q. Peng, Aerocrete made with low silicon tailings of Cheng Chao iron ore mine, J. Wuhan Univ. Tech. Mater. Sci. Ed. 15(2) (2000) 58–62.
Google Scholar
[9]
N. Y. Mostafa, Influence of air-cooled slag on physicochemical properties of autoclaved aerated concrete, Cem. Concr. Res. 35 (2005) 1349–1357.
DOI: 10.1016/j.cemconres.2004.10.011
Google Scholar
[10]
Q. K. Wang, Y. Z. Chen, F. X. Li, T. Sun, B. B. Xu, Microstructure and properties of silty siliceous crushed stone-lime aerated concrete, J. Wuhan Univ. Tech. Mater. Sci. Ed. 21(2) (2006) 17–20.
DOI: 10.1007/bf02840830
Google Scholar
[11]
F. X. Li, Y. Z. Chen, S. Z. Long, Experimental investigation on aerated concrete with addition of lead–zinc tailings, J. Southwest Jiao tong Univ. 43(6) (2008) 810–815.
Google Scholar
[12]
H. Kurama, I. B. Topcu, C. Karakurt, Properties of the autoclaved aerated concrete produced from coal bottom ash, J. Mater. Process. Tech. 209 (2009) 767–773.
DOI: 10.1016/j.jmatprotec.2008.02.044
Google Scholar
[13]
X. Y. Huang, W. Ni, W. H. Cui, Z. J. Wang, L. P. Zhu, Preparation of autoclaved aerated concrete using copper tailings and blast furnace slag, Constr. Build. Mater. 27 (2012) 1–5.
DOI: 10.1016/j.conbuildmat.2011.08.034
Google Scholar
[14]
K. Jitchaiyaphum, T. Sinsiri, C. Jaturapitakkul, P. Chindaprasirt, Cellular lightweight concrete containing high-calcium fly ash and natural zeolite, Inter. J. Min. Met. Mater. 20(5) (2013) 462–471.
DOI: 10.1007/s12613-013-0752-1
Google Scholar
[15]
M. Yuttitham, S. H. Gheewala, A. Chidthaisonga, Carbon footprint of sugar produced from sugarcane in eastern Thailand, J. Clean. Prod. 19 (2011) 2119-2127.
DOI: 10.1016/j.jclepro.2011.07.017
Google Scholar
[16]
International Sugar Statistics, 2008. The International Sugar Season Runs from September to August, ED & F Man e 2007/08, Oct/Sep basis Available from: http: /www. illovosugar. com.
Google Scholar
[17]
Economic and Social Department: The Statistical Division, 2011. Crop production: Food and agricultural organization of United Nations, Available from: <http: /www. faostat. fao. org>.
Google Scholar
[18]
Office of Cane and Sugar Board. Report on total cane crushing and sugar production 2013/2014. Thailand: Ministry of Industry.
Google Scholar
[19]
A. Thongtha, S. Maneewan, C. Punlek, Y. Ungkoon, Investigation of the compressive strength, time lags and decrement factors of AAC-lightweight concrete containing sugar sediment waste, Energ. Build. 84 (2014) 516–525.
DOI: 10.1016/j.enbuild.2014.08.026
Google Scholar
[20]
A. Thongtha, S. Maneewan, C. Punlek, Y. Ungkoon, Improving mechanical properties of autoclaved aerated concrete by sugar sediment, Adv. Mater. Res. 807-809 (2013) 1266–1269.
DOI: 10.4028/www.scientific.net/amr.807-809.1266
Google Scholar
[21]
A. M. Contreras, E. Rosa, M. Pe´rez, H. V. Langenhove, J. Dewulf, Comparative life cycle assessment of four alternatives for using by-products of cane sugar production, J. Clean. Prod. 17 (2009) 772-779.
DOI: 10.1016/j.jclepro.2008.12.001
Google Scholar
[22]
M. Goedkoop, R. Spriensma, The eco-indicator99: A damage oriented method for life cycle impact assessment, third ed. (Methodology Report), (2001).
Google Scholar