Effect of Heat Treatment on Microstructures and Mechanical Properties of Al-Modified Boron High Speed Steel

Article Preview

Abstract:

Boron-bearing high speed steels are widely used in roller materials because of their improved wear resistance and toughness. In present work, aluminum was added into boron high speed steel and the aging-hardening behavior and microstructures of tempered boron high speed steel at various tempering temperatures were investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), Energy dispersive spectrometry (EDS) and HR-150A Rockwell hardness tester. The results show that the bulk hardness of boron high speed steel gradually enhances with the increasing destabilized temperature. Aluminum addition cuts down the bulk hardness and delays the hardening process, thus leading to high the hardening value of boron high speed steel shifting to higher destabilized temperature. After tempering process, boron-bearing high speed steel displays precipitate-hardening behavior at the tempered temperature of about 520°C. The bulk hardness of boron-bearing high speed steel achieves 60.5 HRC as a maximum value when the aluminum addition is 0.6 wt.%. More aluminum addition can result in lower precipitate-hardening rate and bulk hardness. The microstructures of boron high speed steel tempered at 520°C consist of eutectic borides and tempered martensite dispersed a lot of secondary precipitates. XRD and TEM results indicate that the precipitate-hardening properties of boron high speed steel depend on precipitates and square degree of martensite

You might also be interested in these eBooks

Info:

Periodical:

Pages:

24-31

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.G. Fu, Q. Xiao, H.F. Fu, Heat treatment of multi-element low alloy wear-resistant steel, Mater. Sci. Eng. A. 396 (2005) 206-212.

DOI: 10.1016/j.msea.2005.01.023

Google Scholar

[2] L.J. Xu, J.D. Xing, S.Z. Wei, Y.Z. Zhang, R. Long, Study on relative wear resistance and wear stability of high-speed steel with high vanadium content, Wear. 262 (2007) 253-261.

DOI: 10.1016/j.wear.2006.05.016

Google Scholar

[3] G.Q. Shi, P.D. Ding, J.L. Liu, H.J. Yin, J. Wang, Microstructure and properties of laser surface hardened M2 high speed steel, Acta Metall. Mater. 43 (1995) 217-223.

DOI: 10.1016/0956-7151(95)90277-5

Google Scholar

[4] H.G. Fu, Q. Xiao, J.D. Xing, A study on the crack control of a high-speed steel roll fabricated by a centrifugal casting technique, Mater. Sci. Eng. A. 474 (2008) 82-87.

DOI: 10.1016/j.msea.2007.03.101

Google Scholar

[5] S. Giménez, C. Zubizarreta, V. Trabadelo, I. Iturriza, Sintering behaviour and microstructure development of T42 powder metallurgy high speed steel under different processing conditions, Mater. Sci. Eng. A. 480 (2008) 130-137.

DOI: 10.1016/j.msea.2007.06.082

Google Scholar

[6] P. Christodoulou, N. Calos, A step towards designing Fe-Cr-B-C cast alloys, Mater. Sci. Eng. A. 301 (2001) 103-117.

DOI: 10.1016/s0921-5093(00)01808-6

Google Scholar

[7] S.Q. Ma, J.D. Xing, G.F. Liu, D.W. Yi, H.G. Fu, J.J. Zhang, Y.F. Li, Effect of chromium concentration on microstructure and properties of Fe-3. 5B alloy, Mater. Sci. Eng. A. 527 (2010) 6800-6808.

DOI: 10.1016/j.msea.2010.07.066

Google Scholar

[8] S.Q. Ma, J.D. Xing, H.G. Fu, Y.M. Gao, J.J. Zhang, Microstructure and crystallography of borides and secondary precipitation in 18 wt. %Cr-4 wt. %Ni-1 wt. %Mo-3. 5 wt. %B-0. 27 wt. %C st eel, Acta Mater. 60 (2012) 831-843.

DOI: 10.1016/j.actamat.2011.11.004

Google Scholar

[9] C.Q. Guo, P.M. Kelly, Modeling of spatial distribution of the eutectic M2B borides in Fe-Cr-B cast irons, J. Mater. Sci. 39 (2004) 1109-1111.

DOI: 10.1023/b:jmsc.0000012956.43917.c1

Google Scholar

[10] C.Q. Guo, P.M. Kelly, Boron solubility in Fe-Cr-B cast irons, Mater. Sci. Eng. A. 352 (2003) 40-45.

DOI: 10.1016/s0921-5093(02)00449-5

Google Scholar

[11] X.F. Zhou, F. Fang, Y.Y. Tu, J.Q. Jiang, H.X. Xu, W.L. Zhu, Effect of aluminum on the solidification microstructure of M2 high speed steel, Acta Metall. Sinica. 50 (2014) 769-776.

Google Scholar

[12] Y.J. Li, Q.C. Jiang, Y.G. Zhao, Z.M. He, Behaviour of aluminum in M2 steel, Scripta Mater. 37 (1997) 173-177.

Google Scholar

[13] M.R. Ghomashchi, Quantitative microstructural analysis of M2 grade high speed steel during high temperature treatment, Acta Mater. 46(1998) 5207-5220.

DOI: 10.1016/s1359-6454(98)00110-4

Google Scholar

[14] F.S. Pan, P.D. Ding, S.Z. Zhou, M.K. Kang, D.V. Edmonds, Effects of silicon additions on the mechanical properties and microstructure of high speed steels, Acta Mater. 45(1997) 4703-4712.

DOI: 10.1016/s1359-6454(97)00121-3

Google Scholar