Nanocomposites for Electrochemical Energy Storage - An Overview

Article Preview

Abstract:

Energy storage and conversion are major problems of our modern society. In the last decades, in order to minimize these problems, a growing research activity was dedicated to the development of new systems involved in this energy field. The fabrication of supercapacitors based on new materials, such as electrochemical double layer capacitor, can offer attractive potentialities. Indeed, these supercapacitors are able to provide a power density ten times higher than that supplied by batteries, and allow a larger number of charge and discharge cycles. The performance of supercapacitors highly depends on the properties of electrode materials. Ternary composites combining both capacitive and faradaic reactions can address the improvement necessary for relatively cost effective and performance of supercapacitors. Particularly, ternary nanocomposites systems of carbon nanotubes (CNTs), conducting polymer (CPs) films and metal oxide/hydroxide; CNT:CP:Metal oxide; has been proposed as potential electrodes for electrochemical supercapacitors, as alternatives to overcome the drawbacks associated with single component electrodes for the construction of high performance supercapacitors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

189-193

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Demirel, in: Sustainability in Energy Technologies in Energy. 2 ed. chapter 8, edited by Springer International Publishing (2016).

Google Scholar

[2] T. R. Fernandes, R. Pimenta, L. Correas, J. M. García-Camús, A. M. Cabral, F. D. Reyes, B. Grano, R. Guerra, C. Couhert and E. Chacón: Int. J. Hydrogen Energy Vol. 38 (2013), p.7594.

DOI: 10.1016/j.ijhydene.2013.01.131

Google Scholar

[3] Y. Garcia-Basabe, C. F. N. Marchiori, B. G. A. L. Borges, N. A. D. Yamamoto, A. G. Macedo, M. Koehler, L. S. Roman and M. L. D. Rocco: J. Appl. Phys. Vol. 115 (2014), p.134901.

Google Scholar

[4] H. Xingliang, D. Hubble, R. Calzada, A. Ashtamkar, D. Bhatia, S. Cartagena, P. Mukherjee and H. Liang: J. Power Sources Vol. 275 (2015), 688.

DOI: 10.1016/j.jpowsour.2014.11.061

Google Scholar

[5] Brazil. Governo do Estado do Rio de Janeiro, in: Portal Rio Capital da Energia. Information on: <http: /www. riocapitaldaenergia. rj. gov. br/site/Conteudo/Objetivos. aspx>. Accessed on: January 25, (2016).

DOI: 10.22239/2317-269x.01859

Google Scholar

[6] A. E. D. Ribeiro, M. C. Arouca and D. M. Coelho: Renewable Energy Vol. 85 (2016), p.554.

Google Scholar

[7] J. C. Pereira: Lusíada Pol. Intern. Seg. Vol. 12 (2016), p.51.

Google Scholar

[8] J. D'A. Mariano, F. R. Santos, G. W. Brito, J. Urbanetz-Junior and E. F. Casagrande-Junior: Journal homepage on www. IJEE. IEEFoundation. org, Vol. 7 (2016), p.347.

Google Scholar

[9] P. Tamiasso-Martinhon, H. Cachet, C. Debiemme-Chouvy and C. Deslouis. Electrochim. Acta Vol. 53, (2008), p.5752.

DOI: 10.1016/j.electacta.2008.03.054

Google Scholar

[10] P. Tamiasso-Martinhon, J. Carreño, C. Sousa, O. E. Barcia and O. R. Mattos. Electrochim. Acta Vol. 51, (2006), p.3022.

Google Scholar

[11] Z. Yu, L. Telard, L. Zhai and J. Thomas: Energy Environ. Sci. Vol. 8 (2015), p.702. 1.

Google Scholar

[12] G. Wang, L. Zhang and J. Zhang: Chem. Soc. Rev. Vol. 41 (2012), p.797.

Google Scholar

[13] P. Sharma and T. S. Bhatti: Energy Conv. Manag. Vol. 51 (2010), p.2901.

Google Scholar

[14] H. Perrot, C. Ridruejo-Arias, C. Debiemme-Chouvy, C. Gabrielli, C. Laberty-Robert, A. Pailleret andO. Sel: J. Phys. Chem. C Vol. 118 (2014), 26551.

DOI: 10.1021/jp508543h

Google Scholar

[15] I. S. Ike, I. Sigalas, S. Iyuke and K. I. Ozoemena: J. Power Sources Vol. 273 (2015), p.264.

Google Scholar

[16] Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li and L. Zhang: Int. J. Hydrogen Energy Vol. 34 (2009) p.4889.

Google Scholar