Effect of Copper Addition on Mechanical Properties of Nanostructured Pb1-xCuxTe Thermoelectric Alloy Systems by Nanoindentation

Article Preview

Abstract:

The mechanical properties of sintered nanostructured Pb1-xCuxTe (0 ≤ x ≤ 0.2) alloy systems were investigated using nanoindentation technique. The powder precursors of the designed systems were prepared by ball milling technique and sintered by hot isostatic pressing. Cu acts as a dopant in these alloy systems, and an increase in its concentration, up to x = 0.1, leads to a more dense and refined nanostructure along with enhancements in both hardness and Young’s modulus. The Cu addition caused an apparent embrittlement in the materials, and spalling of the materials was recognized when x exceeded 0.15. These results imply that design parameters of complex mechanical environments under thermal shocks and vibrations cannot be determined only in terms of hardness and Young’s modulus of thermoelectric systems like Pb1-xCuxTe alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-209

Citation:

Online since:

May 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Joseph and Y. Amouyal: J. Electron. Mater. Vol. 44 (2015), p.1460.

Google Scholar

[2] C. -H. Kuo, H. -S. Chien, C. -S. Hwang,Y. -W. Chou, M. -S. Jengand and M. Yoshimura: Mater. Trans. Vol. 52 (2011), p.795.

Google Scholar

[3] Y. Gelbstein: J. Eelectron. Mater. Vol. 40 (2011), p.533.

Google Scholar

[4] R. He, S. Gahlawat, C. Guo, S. Chen, T. Dahal, H. Zhang, W. Liu, Q. Zhang, E. Chere, K. White and Z. Ren: Phys. Status Solidi A Vol. 212 (2015), p.2191.

DOI: 10.1002/pssa.201532045

Google Scholar

[5] H. Wu, S. -W. Chen, T. Ikeda and G.J. Snyder: Acta MaterialiaVol. 60 (2012), p.6144.

Google Scholar

[6] B. Duan, G. Li, P. Zhai, L. Liu, S. Ding, P. Li, C. Xu and Q. Zhang: J. Eelectronic Mater. Vol. 43 (2014), p.2115.

Google Scholar

[7] M.S. El-Asfoury, M.N.A. Nasr, K. Nakamura and A.A. El-Moneim: Jpn. J. Appl. Phys. Vol. 55 (2016), p.045802.

Google Scholar

[8] J.E. Ni, E.D. Case, K.N. Khabir, R.C. Stewart, C. -I. Wu, T.P. Hogan, E.J. Timm, S.N. Girard and M.G. Kanatzidis: Mater. Sci. Eng. B Vol. 170 (2010), p.58.

Google Scholar

[9] W.C. Oliver and G.M. Pharr: J. Mater. Res. Vol. 7 (1992), p.1564.

Google Scholar

[10] A.J. Strauss:J. Electron. Mater. Vol. 2 (1973), p.553.

Google Scholar

[11] W.C. Dunlap: Phys. Rev. Vol. 100 (1955), p.1629.

Google Scholar

[12] A.N. Avdonin, G.V. Kolibaba, D.D. Nedeoglo, N.D. Nedeoglo and V.P. Sirkeli: J. Optoelectron. Adv. Mater. Vol. 7 (2005), p.733.

DOI: 10.1016/j.jlumin.2004.11.006

Google Scholar

[13] A. Vasko, L. Tichy, J. Horak and J. Weissenstein: Appl. Phys. Vol. 5 (1974), p.217.

Google Scholar

[14] M. Grundmann: The Physics of Semiconductors (Springer, Heidelberg 2006).

Google Scholar

[15] C. Gayner, R. Sharma, I. Mallik, M.K. Dasand K.K. Kar: J. Phys. D: Appl. Phys. Vol. 49 (2016), p.13.

Google Scholar

[16] F. Ren, B.D. Hall, J.E. Ni, E.D. Case, J. Sootsman, M.G. Kanatzidis, E. Lara-Curzio, R.M. Trejo and E.J. Timm: Mater. Res. Soc. Symp. Proc. Vol. 1044 (2008).

DOI: 10.1557/proc-1044-u04-04

Google Scholar

[17] K. Kadel, L. Kumari, X. Wang, W. Li, J.Y. Huang and P.P. Provencio: Nanoscale Res. Lett. Vol. 9 (2014).

Google Scholar

[18] A.A. El-Moneim, N. Kumagai and K. Hashimoto: Mater. Trans. Vol. 50 (2009), p. (1969).

Google Scholar

[19] A. Gebert, A.A. El-Moneim, O. Gutfleisch and L. Schultz: IEEE Trans. Magnet. Vol. 38 (2002), p.2979.

Google Scholar

[20] A.A. El-Moneim: Int.J. Hydrogen Energy Vol. 36 (2011), p.13398.

Google Scholar

[21] A.A. El-Moneim, E. Akiyama, H. Habazaki, A. Kawashima and K. Asami: Corrosion Sci. Vol. 40 (1998), p.1491.

Google Scholar

[22] A. Nasser, M.A. Kassem, A. Elsayed and A.A. Moniem: J. Mater. Eng. Perform. Vol. 25 (2016), p.5065.

Google Scholar