[1]
Y.Y. Pinto, J.D. Le, N.C. Seeman, K.M. -Forsyth, T.A. Taton and R.A. Kiehl: Sequence-Encoded Self-Assembly of Multiple-Nanocomponent Arrays by 2D DNA Scaffolding, Nano Letters Vol. 4 (2005), p.2399–2402.
DOI: 10.1021/nl0515495
Google Scholar
[2]
J. Alshudukhi, S. Ou, P. Ball, L. Zhao and G. Zhao: Energy Efficiency Metrics for Low-Power Near Ground Level Wireless Sensors, The Third International Workshop on Green Optimized Wireless Networks (2015).
DOI: 10.1109/wimob.2015.7347980
Google Scholar
[3]
V. Ermolov, M. Heino, A. Kärkkäinen, R. Lehtiniemi, N. Nefedov, P. Pasanen and M.A. Uusitalo: Significance of Nanotechnology for Future Wireless Devices and Communications, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC) (2007).
DOI: 10.1109/pimrc.2007.4394126
Google Scholar
[4]
T. Ryhanen, M.A. Uusitalo, O. Ikkala, A. Kärkkäinen: Nanotechnologies for Future Mobile Devices, Cambridge University Press (2010).
DOI: 10.1017/cbo9781139192255
Google Scholar
[5]
I. Zalbide, E. D'Entremont, A. Jiménez, H. Solar, A. Beriain and Roc Berenguer: Battery-free wireless sensors for industrial applications based on UHF RFID Technology, IEEE SENSORS (2014).
DOI: 10.1109/icsens.2014.6985299
Google Scholar
[6]
R. Melik, E. Unal, N.K. Perkgoz, C. Puttlitz and H.V. Demir: Metamaterial-Based Wireless RF-MEMS Strain Sensors, IEEE SENSORS (2010).
DOI: 10.1109/icsens.2010.5690582
Google Scholar
[7]
M. Bozzi and R. Moro: Low-Cost Fabrication, Eco-Friendly Materials, and Easy Integration: the New Technological Paradigm for the Future Wireless Sensor Networks, Proceedings of the 43rd European Microwave Conference (2013).
Google Scholar
[8]
S. Frank: Graphene transistors, Nature nanotechnology Vol. 5, No. 7 (2010), pp.487-496.
Google Scholar
[9]
G.S. Snider and R.S. Williams: Nano/CMOS architectures using a field-programmable nanowire interconnect, Nanotechnology Vol. 18 No. 3 (2007), p.035204.
DOI: 10.1088/0957-4484/18/3/035204
Google Scholar
[10]
I.I. Abramov, V.V. Barkalin, E.A. Belogurov, V.A. Labunov and A.S. Chashynskiy: Simulation of resonant excitation of electromechanical vibrations in carbon nanotube radio receiver, Microwave and Telecommunication Technology (CriMiCo), 21st International Crimean Conference (2011).
Google Scholar
[11]
D. Steingart, S. Roundy, P.K. Wright and J.W. Evans: Micropower Materials Development for Wireless Sensor Networks, MRS Bulletin Vol. 33 (2008), pp.408-409.
DOI: 10.1557/mrs2008.81
Google Scholar
[12]
M.S. Islam and L. Vj: Nanoscale materials and devices for future communication networks, IEEE Communications Magazine Vol. 48 No. 6 (2010), pp.112-120.
DOI: 10.1109/mcom.2010.5473872
Google Scholar
[13]
N. Gupta, A. Prakash and R. Tripathi: Clustering based Cognitive MAC Protocol for Channel Allocation to Prioritize Safety Message Dissemination in Vehicular Ad-hoc Network, Vehicular Communications, Elsevier Vol. 5 (2016), pp.44-54.
DOI: 10.1016/j.vehcom.2016.09.004
Google Scholar
[14]
M.S. Islam: The All Pervading Nanosensors, International Journal of Nanotechnology, Special Issue on Nanosensors Vol. 5 (2008), No. 4-5.
Google Scholar