Antibacterial and Mechanical Properties of the TiO2/ABS Composites

Article Preview

Abstract:

The aim of this present work is to enhance photoantibacterial performance on a surface of Acrylonitrile-Butadiene-Styrene (ABS) by mixing titanium dioxide (TiO2). The influences of different ratios for TiO2 under UV light irradiation were investigated according to JIS Z 2801: 2010 standard. 0.5%, 1% and 2% TiO2/ABS were formed by melting process with internal mixer and compression molding process. E.coli were chosen as a model of bacteria. The best photoantibacterial activity was provided by 0.5% TiO2/ABS. The result showed that E.coli could reduce up to 46.95%. However, a higher amount of TiO2 (i.e., 1% and 2% TiO2/ABS) obstructed the reaction, and E.coli was reduced to 42.6% and 36.08%, respectively. This was due to its aggregation observed from SEM image. For mechanical properties for TiO2/ABS, The results showed that tensile modulus and tensile strength of blending TiO2 at 0.5 %wt was the highest but the tensile was decreased when increasing TiO2 in polymer blended.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-213

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Wang, R. Y. Hong, W. G. Feng, D. Badami, K. Zeng, Electrical and mechanical properties of ABS/EPDM composites filled with carbon black. Mater. Lett. 125 (2014) 48–50.

DOI: 10.1016/j.matlet.2014.03.136

Google Scholar

[2] S. Y. Fu, B. Lauke, Characterization of tensile behavior of hybrid short glass fiber/calcite particle/ABS composites. Comp. Parr. A 29A (1998) 575-583.

DOI: 10.1016/s1359-835x(97)00117-6

Google Scholar

[3] S. M. Lai, H. C. Li, Y. C. Liao, Properties and preparation of compatibilized nylon 6 Nano composites/ABS blends: Part II – Physical and thermal properties. European Polym. J. 43 (2007) 1660-1671.

DOI: 10.1016/j.eurpolymj.2007.02.009

Google Scholar

[4] Y. Mohammad, S. N. Masoud, G. Forozan, G. Davood, A. Alireza, Polymeric nanocomposite materials: Synthesis and thermal degradation of acrylonitrile–butadiene–styrene/tin sulfide (ABS/SnS). Inorg. Chem. Acta. 371 (2011) 1–5.

DOI: 10.1016/j.ica.2011.02.020

Google Scholar

[5] J. Chen, X. C. Du, W. B. Zhang, J. H. Yang, N. Zhang, T. Huang, Y. Wang, Synergistic effect of carbon nanotubes and carbon black on electrical conductivity of PA6/ABS blend. Comp. Sci. Tech. 81 (2013) 1–8.

DOI: 10.1016/j.compscitech.2013.03.014

Google Scholar

[6] R. Mohammad, E. Mohsen, M. Mehran, Effect of reprocessing on shrinkage and mechanical properties of ABS and investigating the proper blend of virgin and recycled ABS in injection molding. J. Mater. Proc. Tech. 214 (2014) 2359–2365.

DOI: 10.1016/j.jmatprotec.2014.04.028

Google Scholar

[7] M. F. Xu, S. Lin, X. M. Chen, Y. Z. Peng, Studies on characteristics of Nanostructure of N-TiO2 thin films and photo-bactericidal action. J. Zhejiang Univ. Sci. B. 7(7) (2006) 586-590.

DOI: 10.1631/jzus.2006.b0586

Google Scholar

[8] L. X. Zhang, X. L. Wang, L. Peng, Z. X. Su, Low Temperature Deposition of TiO2 Thin Film on Polyvinyl Alcohol Fibers with Photocatalytic and Antibacterial Activities. Appl. Surf. Sci. 254(6) (2008) 1771-1774.

DOI: 10.1016/j.apsusc.2007.07.145

Google Scholar

[9] K. D. Kim, D. N. Han, J. B. Lee, H. T. Kim, Formation and Characterization of Ag Deposited TiO2 Nanoparticles by Chemical Reduction Method. Script. Mater. Lia. 54 (2005) 143-146.

DOI: 10.1016/j.scriptamat.2005.09.054

Google Scholar

[10] A. R. Bruton, Manufacturing and performance of titanium dioxide ultra-high molecular weight polyethylene nanocomposite materials; MSc thesis; University of Delaware; USA, (2006).

Google Scholar

[11] L. F. Giraldo, M. Echeverri, B. L. López, Reinforcement of Polyamide 6 with Nanoparticles, Macromolecular Symposium, 258 (2007) 119-128.

DOI: 10.1002/masy.200751214

Google Scholar

[12] Z. Zhang, J. L. Yang, K. Friedrich, Creep resistant polymeric nanocomposites, Polym. 45 (2004) 3481-3485.

DOI: 10.1016/j.polymer.2004.03.004

Google Scholar

[13] C. Saujanya, S. Radhakrishnan, Structure development and crystallization behavior of PP/ nanoparticulate composite, Polym. 42 (2001) 6723-6731.

DOI: 10.1016/s0032-3861(01)00140-9

Google Scholar

[14] Y. Zheng, Y. Zhengb, R. Ning, Effects of nanoparticles SiO2 on the performance of nanocomposites, Mater. Lett. 57 (2003) 2940-2944.

Google Scholar

[15] S. K. Esthappan, S. K. Kuttappan, R. Joseph, Effect of titanium dioxide on the thermal ageing of polypropylene, Polym. Deg. Stabil. 97 (2012) 615-620.

DOI: 10.1016/j.polymdegradstab.2012.01.006

Google Scholar

[16] M. K. Akkapeddi, Glass fiber reinforced polyamide-6 nanocomposites, Polym. Compos. 21 (2000) 576-585.

DOI: 10.1002/pc.10213

Google Scholar

[17] A. Mirigul, Y. Huseyin, Mechanical and Antibacterial Properties of Injection Molded Polypropylene/TiO2 Nano-Composites: Effects of Surface Modification, J. Mater. Sci. Technol. 28(8) (2012) 686–692.

DOI: 10.1016/s1005-0302(12)60116-9

Google Scholar