[1]
A. Kucerova, Design of Structures with FRP Reinforcement, Master's Thesis, Brno, 2012. (in Czech).
Google Scholar
[2]
O. G. Martynenko, A. V. Luikov's Scientific Legacy (on the 90th Anniversary of his Birth), J. Eng. Phys. Thermophys. 73. 5 (2000) 869-875.
DOI: 10.1007/bf02681572
Google Scholar
[3]
Z. P. Bazant, W. Thonguthai, Pore Pressure and Drying of Concrete at High Temperature, Journal of Engineering Mechanics Division 104. 5 (1978) 1059-1079.
DOI: 10.1061/jmcea3.0002404
Google Scholar
[4]
Z. P. Bazant, M. F. Kaplan, Concrete at High Temperatures: Material Properties and Mathematical Models, Longman, England, (1996).
Google Scholar
[5]
G. N. Ahmed, J. P. Hurst, Coupled Heat and Mass Transport Phenomena in Siliceous Aggregate Concrete Slabs Subjeted to Fire, Fire and Materials. 21 (1997) 161-168.
DOI: 10.1002/(sici)1099-1018(199707/08)21:4<161::aid-fam602>3.0.co;2-r
Google Scholar
[6]
Y. Ichikawa, G. L. England, Prediction of moisture migration and pore pressure build-up in concrete at high temperatures, Nuclear Engineering and Design. 228 (2004) 245-259.
DOI: 10.1016/j.nucengdes.2003.06.011
Google Scholar
[7]
R. T. Tenchev, L. Y. Li, J. A. Purkiss, Finite Element Analysis of Coupled Heat and Moisture Transfer in Concrete Subjected to Fire, Numerical Heat Tranfer: Part A: Applications. 39. 7 (2001) 685-710.
DOI: 10.1080/10407780152032839
Google Scholar
[8]
D. Gawin, F. Pesavento, B. A. Schrefler, What Physical Phenomena Can Be Neglested When Modelling Concrete at High Temperature? A Comparative Study. Part 1: Physical Phenomena and Mathematical Model, International Journal of Solids and Structures. 48 (2011).
DOI: 10.1016/j.ijsolstr.2011.03.004
Google Scholar
[9]
R. Cerny, P. Rovnanikova, Transport processes in concrete, Spon Press, London, (1996).
Google Scholar
[10]
L. Y. Li, R. T. Tenchev, An Engineering Model for Coupled Heat and Mass Transfer Analysis in Heated Concrete, in: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, February, 2002, pp.213-222.
DOI: 10.1243/0954406021525142
Google Scholar
[11]
A. Peter, K. Murugesan, U. Sharma, et al., Numerical Study of Heat and Moisture Transport Through Concrete at Elevated Temperatures, J. Mech. Sci. Technol. 28. 5 (2014) 1967-(1977).
DOI: 10.1007/s12206-014-0345-6
Google Scholar
[12]
M. Benes, R. Stefan, Surface Spalling of Concrete Structures during Fire, Stavebni obzor. 6. (2011) 161-166. (in Czech).
Google Scholar
[13]
CSN EN 1992-1-2, Eurocode 2: Design of Concrete Structures – Part 1. 2: General Rules –Structural Fire Design, Cesky normalizacni institut, Praha, 2006. (in Czech).
Google Scholar
[14]
B. Johannesson, Concrete Technology, Study Materials, Lecture 8, Technical University of Denmark, (2009).
Google Scholar
[15]
CSN EN 1991-1-2, Eurocode 1: Actions on Structures – Part 1-2: General Actions – Actions on Structures Exposed to Fire, Cesky normalizacni institut, Praha, 2004. (in Czech).
DOI: 10.1002/9783433601570.oth1
Google Scholar
[16]
M. Benes et al., Analysis of Coupled Transport Phenomena in Concrete at elevated Temperatures, Appl. Math. Comput. 219. 13 (2011) 7262-7274.
Google Scholar
[17]
P. Rozehnalova, A. Kucerova, P. Stepanek, Mathematical Modeling of Processes Proceeding in Concrete during Fire, in: Thermophysics 2014 – Conference Proceedings, October 8-10, 2014, Podkylava, Slovak Republic, 97-104.
Google Scholar