[1]
A.D. Ferreira, A.M.G. Lopes, D.X. Viegas, A.C.M. Sousa, Experimental and numerical simulation of flow around two-dimensional hills, J. Wind Eng Ind Aerod. 54/55 (1995) 173-181.
DOI: 10.1016/0167-6105(94)00040-k
Google Scholar
[2]
H.G. Kim, C.M. Lee, H.C. Lim, An experimental and numerical study on the flow over two-dimensional hills, J. Wind Eng Ind Aerod. 66 (1997) 17-33.
Google Scholar
[3]
Y. Ohya, T. Uchida, Laboratory and numerical studies of the atmospheric stable boundary layers, J. Wind Eng Ind Aerod. 104-106 (2008) 379-388.
Google Scholar
[4]
Y. Maruyama, T. Tamura, Y. Okuda, M. Ohashi, LES of turbulent boundary layer for inflow generation using stereo PIV measurement data, J. Wind Eng Ind Aerod. 104-106 (2012) 379-38.
DOI: 10.1016/j.jweia.2012.03.013
Google Scholar
[5]
K. Kotrasova, I. Grajciar, E. Kormaníkova, Dynamic time-history response of cylindrical tank considering fluid - Structure interaction due to earthquake, Applied Mechanics and Materials. 617 (2014).
DOI: 10.4028/www.scientific.net/amm.617.66
Google Scholar
[6]
T. Hanzlik, V. Salajka, J. Kala, Application of a simple biomechanical model of a pedestrian in the solution of the dynamic response of a light bridge structure, in: Proceedings of the 25th European Safety and Reliability Conference, ESREL (2015).
DOI: 10.1201/b19094-383
Google Scholar
[7]
J. Kralik, J. Kralik Jr., Failure probability of NPP communication bridge under the extreme loads, Applied Mechanics and Materials. 617 (2014) 81-85. DOI: 10. 4028/www. scientific. net/ AMM. 617. 81.
DOI: 10.4028/www.scientific.net/amm.617.81
Google Scholar
[8]
K. Kotrasova, E. Kormanikova, Hydrodynamic analysis of fluid effect in rigid rectangular tank due to harmonic motion, Key Eng Mat. 635 (2015) 147-150. DOI: 10. 4028/www. scientific. net/ KEM. 635. 147.
DOI: 10.4028/www.scientific.net/kem.635.147
Google Scholar
[9]
V. Michalcova, S. Kuznetsov, S. Pospisil, Models of load on buildings from the effects of the flow field, Transactions of the VŠB - Technical University of Ostrava: Construction Series. 13 (2013) 91-97. DOI: 10. 2478/tvsb-2013-0014.
DOI: 10.2478/tvsb-2013-0014
Google Scholar
[10]
V. Michalcova, S. Kuznetsov, J. Brozovsky, S. Pospisil, Numerical and experimental investigations of air flow turbulence characteristics in the wind tunnel contraction, Applied Mechanics and Materials. 617 (2014).
DOI: 10.4028/www.scientific.net/amm.617.275
Google Scholar
[11]
Y. Qu, M. Milliez, L. Musson-Genon, B. Carissimo, Numerical study of the thermal effects of buildings on low-speed airflow taking into account 3D atmospheric radiation in urban canopy, J. Wind Eng Ind Aerod. 104-106 (2012) 474-483.
DOI: 10.1016/j.jweia.2012.03.008
Google Scholar
[12]
S.S. Pillai, R. Yoshie, Experimental and numerical studies on convective heat transfer from various urban canopy configurations, J. Wind Eng Ind Aerod. 104-106 (2012) 447-45.
DOI: 10.1016/j.jweia.2012.03.010
Google Scholar
[13]
S. Kuznetsov, S. Pospisil, at al. Wind-tunnel simulation of the thermally stratified atmospheric boundary layer in complex terrain, in: Proceedings of the 12th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, (2016).
Google Scholar
[14]
J.E. Pieterse, T.M. Harms, CFD investigation of the atmospheric boundary layer under different thermal stability conditions, J. Wind Eng Ind Aerod. 121 (2013) 82-97.
DOI: 10.1016/j.jweia.2013.07.014
Google Scholar
[15]
H. Nakayama, T. Takemi, H. Nagai, Large-eddy simulation of plume dispersion under various thermally stratified boundary layers, Adv. Sci. Res. 11 (2014) 75-81. DOI: 10. 5194/asr-11-75-(2014).
DOI: 10.5194/asr-11-75-2014
Google Scholar
[16]
K. Kotrasova, E Kormanikova, Hydrodynamic analysis of fluid effect in rigid rectangular tank due to harmonic motion, Key Eng Mat. 635 (2015) 147-150 DOI: 10. 4028/www. scientific. net/ KEM. 635. 147.
DOI: 10.4028/www.scientific.net/kem.635.147
Google Scholar
[17]
Y. Ohya, H. Hashimoto, S. Ozono, A numerical study of a thermally stratified boundary layer under various stable conditions, J. Wind Eng Ind Aerod. 67–68 (1997) 793-804.
DOI: 10.1016/s0167-6105(97)00119-0
Google Scholar
[18]
V. Michalcova, S. Kuznetsov, S. Pospisil, Numerical and experimental study of the load of an object due to the effects of a flow field in the atmospheric boundary layer. Journal of Mathematics and Computers in Simulation. 8 (2014) 135-140.
Google Scholar
[19]
S. Zilitinkevich, A. Baklanov, Calculation Of The Height Of The Stable Boundary Layer In Practical Applications. Boundary-Layer Meteorology. 8 (2002) 389-409.
DOI: 10.1023/a:1020376832738
Google Scholar