[1]
Zantye, P.B.: Process, Reliability and Integration Issues in Chemical Mechanical Planarization, (2005). Department of Mechanical Engineering, University of South Florida.
Google Scholar
[2]
Zantye, P.B., A. Kumar and A.K. Sikder: Chemical mechanical planarization for microelectronics applications. MATERIALS SCIENCE & ENGINEERING R-REPORTS. (2004) 45: pp.89-220.
DOI: 10.1016/j.mser.2004.06.002
Google Scholar
[3]
Krishnan, M., J.W. Nalaskowski and L.M. Cook: Chemical mechanical planarization: slurry chemistry, materials, and mechanisms. Chem. Rev. (2010) 110: pp.178-204.
DOI: 10.1021/cr900170z
Google Scholar
[4]
Hong, H.C. and Y.L. Huang: A comprehensive review of endpoint detection in chemical mechanical planarization for deep-submicron integrated circuits manufacturing. INTERNATIONAL JOURNAL OF MATERIALS & PRODUCT TECHNOLOGY. (2003) 18: pp.469-486.
DOI: 10.1504/ijmpt.2003.002503
Google Scholar
[5]
Zeidler, D., M. Plotner and K, Drescher: Endpoint detection method for CMP of copper. MICROELECTRONIC ENGINEERING. (2000) 50: pp.411-416.
DOI: 10.1016/s0167-9317(99)00309-3
Google Scholar
[6]
Das, T.K., R. Ganesan, et al.: Online end point detection in CMP using SPRT of wavelet decomposed sensor data. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING. (2005) 18: pp.440-447.
DOI: 10.1109/tsm.2005.852085
Google Scholar
[7]
Fujita, T., K. Kitade and T. Yokoyama: Development of Original End Point Detection System Utilizing Eddy Current Variation Due to Skin Effect in Chemical Mechanical Polishing. JAPANESE JOURNAL OF APPLIED PHYSICS. (2011) 50: p. 05EC09(1-6).
DOI: 10.7567/jjap.50.05ec09
Google Scholar
[8]
Hong, H.C. and Y.L. Huang: In situ endpoint detection by acoustic emissions in chemical-mechanical polishing of metal overlay. IEEE Transactions on Semiconductor. (2007) 20: pp.306-312.
DOI: 10.1109/tsm.2007.901406
Google Scholar
[9]
Hong, H.C. and Y.L. Huang: In situ endpoint detection by pad temperature in chemical-mechanical polishing of copper overlay. IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING. (2004) 17: pp.180-187.
DOI: 10.1109/tsm.2004.826933
Google Scholar
[10]
Hongkai, L., Q. Zilian, et al.: A reliable control system for measurement on film thickness in copper chemical mechanical planarization system. Review of Scientific Instruments. (2013) 84: pp.125101-125110.
DOI: 10.1063/1.4833396
Google Scholar
[11]
Sampurno, Y., Gu X., et al.: End-Point Detection of Ta/TaN Chemical Mechanical Planarization via Forces Analysis. JAPANESE JOURNAL OF APPLIED PHYSICS. (2010) 49: p. 05FC01(1-4).
DOI: 10.1143/jjap.49.05fc01
Google Scholar
[12]
Changxing, T., Z. Weifeng, et al.: Application of Real-time Cu thickness Profile Control in Cu CMP. ECS Transactions. (2012) 44: pp.553-557.
DOI: 10.1149/1.3694368
Google Scholar
[13]
Seo, Y.J., W.S. Lee, et al.: Motor-current-based real-time end point detection of shallow-trench-isolation chemical mechanical polishing process using high-selectivity slurry. JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS. (2003).
DOI: 10.1143/jjap.42.6396
Google Scholar
[14]
Beckage, P.J., R. Lukner, et al.: Improved metal CMP endpoint control by monitoring carrier speed controller output or pad temperature, in: PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS (SPIE). (1999) 3882: pp.118-125.
DOI: 10.1117/12.361299
Google Scholar
[15]
Kim, S.Y., C.J. Park and Y.J. Seo: Signal analysis of the end point detection method based on motor current. MICROELECTRONIC ENGINEERING. (2003) 66: pp.472-479.
DOI: 10.1016/s0167-9317(02)00930-9
Google Scholar