Subsized Specimens for Fracture Resistance Characterisation Including Transferability Issues

Article Preview

Abstract:

The contribution is focused on characterization of methods enabling to apply small/subsized specimens for fracture resistance characterization. The applied methods are divided into transition region and upper shelf region. The approaches used in the upper shelf region represent at the same time methods applicable for ductile materials without transition. Relating to subsized samples two basic approaches are applicable: (i) miniaturized samples based on common standard ones and (ii) specific specimens/methods, e.g. small punch test etc. The results described in the paper belong to the first group. For interpretation of data generated under low constraint conditions toughness scaling models and master curve approached are commented. In ductile region, either the sample used generate valid toughness characteristics, or, if not, there is no way how to correct measured data except damage quantification through micromechanical models.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

110-115

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Holzmann, I. Dlouhy, M. Brumovsky: Measurement of fracture toughness transition of CrNiMoV pressure vessel steel using pre-cracked Charpy specimens, Int J Pres Ves Pip, 76, 1999, 9, 591-598.

DOI: 10.1016/s0308-0161(99)00041-1

Google Scholar

[2] I. Dlouhy, V. Kozak, L. Valka et al.: The susceptibility of local parameters to steel microstructure evaluated using Charpy type specimen, J Phys IV, C6, 1996, 205-214.

DOI: 10.1051/jp4:1996620

Google Scholar

[3] T. L. Anderson, R.H. Dodds: Specimen size requirements for fracture toughness testing in the transition region, J Test Eval, 19, 1991, 123-134.

DOI: 10.1520/jte12544j

Google Scholar

[4] I. Dlouhy et al.: Micromechanical aspects of constraint effect at brittle fracture initiation, in: The Transferability of Fracture Mechanical Characteristics, I. Dlouhy ed., Kluwer, (2002).

DOI: 10.1007/978-94-010-0608-8_5

Google Scholar

[5] T. Linse, M. Kuna, H. W. Viehrig: Quantification of brittle-ductile failure behavior of ferritic RPV steels using the Small-Punch-Test, Mater Sci Eng A, 614, 2014, 136-147.

DOI: 10.1016/j.msea.2014.05.095

Google Scholar

[6] T. Smida, J. Babjak, I. Dlouhy: Prediction of fracture toughness temperature dependence from tensile test parameters, Kovove Mater – Met Mater, 48, 2010, 6, 345-352.

DOI: 10.4149/km_2010_6_345

Google Scholar

[7] R. H. Dodds Jr, C. Ruggieri, K. Koppenhoefer: 3D constraint effects on models for transferability of cleavage fracture toughness, In: Fatigue and Fracture Mechanics, ASTM STP 1321, Underwood, MacDonald & Mitchell, Eds., 1997, 179-197.

DOI: 10.1520/stp12308s

Google Scholar

[8] X. Gao, R.H. Dodds Jr.: An engineering approach to assess constraint effects on cleavage fracture toughness, Eng Fract Mech, 68, 2001, 263-283.

DOI: 10.1016/s0013-7944(00)00102-8

Google Scholar

[9] F. Minami, M. Ohata, et al.: Method of constraint loss correction of CT fracture toughness for fracture assessment of steel components, Eng Fract Mech, 73, 2006, 14, 1996-(2020).

DOI: 10.1016/j.engfracmech.2006.03.013

Google Scholar

[10] L. Stratil, F. Siska, I. Dlouhy, M. Serrano: The application of miniaturized three-point-bend specimens for determination of the reference temperature of JRQ steel, in Pressure Vessel and Piping, ASME conference, Boston, 2015, 6. p.

DOI: 10.1115/pvp2015-45706

Google Scholar

[11] L. Stratil: Determination of fracture mechanical characteristics from sub-size specimens, PhD Thesis, 2014, Brno University of Technology.

Google Scholar

[12] ASTM E1820-15, Standard Test Method for Measurement of Fracture Toughness, 2015, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA, (2015).

Google Scholar

[13] ASTM E1921-13, Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range, ASTM International, West Conshohocken, PA, (2013).

DOI: 10.1520/e1921-22

Google Scholar

[14] M. Serrano: Evaluación computacional del efecto de la pérdida de constricción en la tenacidad de fractura de la vasija de reactores nucleares, PhD Thesis, 2007, Polytechnical Univ. Madrid.

DOI: 10.20868/upm.thesis.1012

Google Scholar

[15] C. Berdin, J. Besson, S. Bugat, et al., Local Approach to Fracture, École des Mines de Paris, 2004, p.442.

Google Scholar