Determination of Mechanical Properties of Metallic Materials from Very Small Volumes by Means of Small Punch Test

Article Preview

Abstract:

The paper summarizes capabilities of the small punch tests on miniature disc specimens from metallic materials. Results obtained by small punch tests can be correlated with mechanical properties determined by conventional or other miniature tests. Three basic types of small punch test setup: i) static/fracture, ii) creep and iii) stress relaxation are described and the basic quantities that can be obtained are shown. Relations for an assessment of conventional mechanical properties from quantities obtained by small punch test are presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

116-121

Citation:

Online since:

June 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] CEN Workshop Agreement CWA 15627: 2007, Small Punch Test Method for Metallic Materials, Dec. (2007).

Google Scholar

[2] M. Manahan, A. Argon, O. Harling: The Development of a Miniaturized Disk Bend Test for the Determination of Post-irradiation Mechanical Properties, J. Nucl. Mater. 104 (1981) 1545–1550.

DOI: 10.1016/0022-3115(82)90820-0

Google Scholar

[3] J. Purmenský, K. Matocha: Zkoušení malých vzorků ve fyzikální metalurgii. In: Metal 2001 10th International Metallurgical and Materials Conference 15. - 17. 5. 2001, Ostrava, Czech Republic, available at: http: /konference. tanger. cz/data/metal2001/sbornik.

Google Scholar

[4] S. Komazaki, T. Kato, Y. Kohno, H. Tanigawa: Creep property measurements of welded joint of reduced-activation ferritic steel by the small-punch creep test, Mater. Sci. Eng. A 510–511 (2009) 229–233.

DOI: 10.1016/j.msea.2008.04.132

Google Scholar

[5] T.E. García, C. Rodríguez, F.J. Belzunce, I. Peñuelas, B. Arroyo: Development of a methodology to study the hydrogen embrittlement of steels by means of the small punch test, Mater. Sci. Eng. A 626 (2015) 342–351.

DOI: 10.1016/j.msea.2014.12.083

Google Scholar

[6] T.E. Garcia, C. Rodríguez, F.J. Belzunce, C. Suárez: Estimation of the mechanical properties of metallic materials by means of the small punch test, J. Alloy. Compd. 582 (2014) 708–717.

DOI: 10.1016/j.jallcom.2013.08.009

Google Scholar

[7] F. Dobeš, P. Dymáček, M. Besterci: Estimation of the mechanical properties of aluminium and an aluminium composite after equal channel angular pressing by means of the small punch test, Mater. Sci. Eng. A 626 (2015) 313–321.

DOI: 10.1016/j.msea.2014.12.054

Google Scholar

[8] D. Andrés, R. Lacalle, J.A. Álvarez: Creep property evaluation of light alloys by means of the Small Punch test: Creep master curves, Mater. Design 96 (2016) 122–130.

DOI: 10.1016/j.matdes.2016.02.023

Google Scholar

[9] P. Dymáček, F. Dobeš, L. Kloc: Small Punch Testing of Sanicro 25 Steel and its Correlation with Uniaxial Tests, Key Eng. Mater. 734 (2017) 70–76.

DOI: 10.4028/www.scientific.net/kem.734.70

Google Scholar

[10] M. Abendroth, M. Kuna: Identification of ductile damage and fracture parameters from the small punch test using neural networks, Eng. Fract. Mech. 73 (2006) 710–725.

DOI: 10.1016/j.engfracmech.2005.10.007

Google Scholar

[11] X. Mao, H. Takahashi: Development of a further-miniaturized specimen of 3 mm diameter for tem disk (ø 3 mm) small punch tests, J. Nucl. Mater. 150 (1987) 42–52.

DOI: 10.1016/0022-3115(87)90092-4

Google Scholar

[12] K. Milička, F. Dobeš: Small punch testing of P91 steel, Int. J. Pres. Ves. Pip. 83 (2006) 625–634.

DOI: 10.1016/j.ijpvp.2006.07.009

Google Scholar

[13] K. Milička, F. Dobeš: On the Monkman–Grant relation for small punch test data, Mater. Sci. Eng. A 336 (2002) 245–248.

DOI: 10.1016/s0921-5093(01)01975-x

Google Scholar

[14] F. Dobeš, K. Milička: Application of creep small punch testing in assessment of creep lifetime, Mater. Sci. Eng. A 510–511 (2009) 440–443.

DOI: 10.1016/j.msea.2008.04.087

Google Scholar

[15] T. Kruml, O. Coddet, J.L. Martin: About the determination of the thermal and athermal stress components from stress-relaxation experiments, Acta Mater. 56 (2008) 333–340.

DOI: 10.1016/j.actamat.2007.09.027

Google Scholar

[16] P. Dymáček: Short term creep small punch testing of P91 and P92 steels, observations and correlations with the numerical results, Key Eng. Mater. 465 (2011) 179–182.

DOI: 10.4028/www.scientific.net/kem.465.179

Google Scholar

[17] P. Dymáček, K. Milička, F. Dobeš: Analysis of potential factors influencing the relation between small punch and conventional creep tests, Metallurgical Journal (Hutnické listy) 63 (2010) 50–53.

Google Scholar

[18] P. Dymáček, L. Iván: Parametric and optimization study of the small punch test, in: B. Strnadel (Ed. ), New Methods of Damage and Failure Analysis of Structural Parts, VŠB-TU Ostrava, 2010, p.121–127.

Google Scholar

[19] P. Dymáček, K. Milička: Creep small-punch testing and its numerical simulations, Mater. Sci. Eng. A 510-511 (2009) 444–449.

DOI: 10.1016/j.msea.2008.06.053

Google Scholar

[20] P. Dymáček, S. Seitl, K. Milička, F. Dobeš: Influence of friction on stress and strain distributions in small punch creep test models, Key Eng. Mater. 417–418 (2010) 561-564.

DOI: 10.4028/www.scientific.net/kem.417-418.561

Google Scholar

[21] D. Andrés, P. Dymáček: Study of the upper die clamping conditions in the small punch test, Theor. Appl. Fract. Mech. 86 (2016) 117–123.

DOI: 10.1016/j.tafmec.2016.07.012

Google Scholar

[22] P. Dymáček: Recent developments in small punch testing: Applications at elevated temperatures, Theor. Appl. Fract. Mech. 86 (2016) 25–33.

DOI: 10.1016/j.tafmec.2016.09.013

Google Scholar

[23] P. Dymáček, M. Ječmínka, M. Abendroth: Prediction of static material properties of P92 steel based on small punch test, in: B. Strnadel (Ed. ), New Methods of Damage and Failure Analysis of Structural Parts, VŠB-TU Ostrava, 2012, p.279–286.

Google Scholar

[24] M. Abendroth: Identification of Creep Properties for P91 Steels at High Temperatures Using the Small Punch Test, Metallurgical Journal (Hutnické listy) 63 (2010) 39–43.

Google Scholar