[1]
CEN Workshop Agreement CWA 15627: 2007, Small Punch Test Method for Metallic Materials, Dec. (2007).
Google Scholar
[2]
M. Manahan, A. Argon, O. Harling: The Development of a Miniaturized Disk Bend Test for the Determination of Post-irradiation Mechanical Properties, J. Nucl. Mater. 104 (1981) 1545–1550.
DOI: 10.1016/0022-3115(82)90820-0
Google Scholar
[3]
J. Purmenský, K. Matocha: Zkoušení malých vzorků ve fyzikální metalurgii. In: Metal 2001 10th International Metallurgical and Materials Conference 15. - 17. 5. 2001, Ostrava, Czech Republic, available at: http: /konference. tanger. cz/data/metal2001/sbornik.
Google Scholar
[4]
S. Komazaki, T. Kato, Y. Kohno, H. Tanigawa: Creep property measurements of welded joint of reduced-activation ferritic steel by the small-punch creep test, Mater. Sci. Eng. A 510–511 (2009) 229–233.
DOI: 10.1016/j.msea.2008.04.132
Google Scholar
[5]
T.E. García, C. Rodríguez, F.J. Belzunce, I. Peñuelas, B. Arroyo: Development of a methodology to study the hydrogen embrittlement of steels by means of the small punch test, Mater. Sci. Eng. A 626 (2015) 342–351.
DOI: 10.1016/j.msea.2014.12.083
Google Scholar
[6]
T.E. Garcia, C. Rodríguez, F.J. Belzunce, C. Suárez: Estimation of the mechanical properties of metallic materials by means of the small punch test, J. Alloy. Compd. 582 (2014) 708–717.
DOI: 10.1016/j.jallcom.2013.08.009
Google Scholar
[7]
F. Dobeš, P. Dymáček, M. Besterci: Estimation of the mechanical properties of aluminium and an aluminium composite after equal channel angular pressing by means of the small punch test, Mater. Sci. Eng. A 626 (2015) 313–321.
DOI: 10.1016/j.msea.2014.12.054
Google Scholar
[8]
D. Andrés, R. Lacalle, J.A. Álvarez: Creep property evaluation of light alloys by means of the Small Punch test: Creep master curves, Mater. Design 96 (2016) 122–130.
DOI: 10.1016/j.matdes.2016.02.023
Google Scholar
[9]
P. Dymáček, F. Dobeš, L. Kloc: Small Punch Testing of Sanicro 25 Steel and its Correlation with Uniaxial Tests, Key Eng. Mater. 734 (2017) 70–76.
DOI: 10.4028/www.scientific.net/kem.734.70
Google Scholar
[10]
M. Abendroth, M. Kuna: Identification of ductile damage and fracture parameters from the small punch test using neural networks, Eng. Fract. Mech. 73 (2006) 710–725.
DOI: 10.1016/j.engfracmech.2005.10.007
Google Scholar
[11]
X. Mao, H. Takahashi: Development of a further-miniaturized specimen of 3 mm diameter for tem disk (ø 3 mm) small punch tests, J. Nucl. Mater. 150 (1987) 42–52.
DOI: 10.1016/0022-3115(87)90092-4
Google Scholar
[12]
K. Milička, F. Dobeš: Small punch testing of P91 steel, Int. J. Pres. Ves. Pip. 83 (2006) 625–634.
DOI: 10.1016/j.ijpvp.2006.07.009
Google Scholar
[13]
K. Milička, F. Dobeš: On the Monkman–Grant relation for small punch test data, Mater. Sci. Eng. A 336 (2002) 245–248.
DOI: 10.1016/s0921-5093(01)01975-x
Google Scholar
[14]
F. Dobeš, K. Milička: Application of creep small punch testing in assessment of creep lifetime, Mater. Sci. Eng. A 510–511 (2009) 440–443.
DOI: 10.1016/j.msea.2008.04.087
Google Scholar
[15]
T. Kruml, O. Coddet, J.L. Martin: About the determination of the thermal and athermal stress components from stress-relaxation experiments, Acta Mater. 56 (2008) 333–340.
DOI: 10.1016/j.actamat.2007.09.027
Google Scholar
[16]
P. Dymáček: Short term creep small punch testing of P91 and P92 steels, observations and correlations with the numerical results, Key Eng. Mater. 465 (2011) 179–182.
DOI: 10.4028/www.scientific.net/kem.465.179
Google Scholar
[17]
P. Dymáček, K. Milička, F. Dobeš: Analysis of potential factors influencing the relation between small punch and conventional creep tests, Metallurgical Journal (Hutnické listy) 63 (2010) 50–53.
Google Scholar
[18]
P. Dymáček, L. Iván: Parametric and optimization study of the small punch test, in: B. Strnadel (Ed. ), New Methods of Damage and Failure Analysis of Structural Parts, VŠB-TU Ostrava, 2010, p.121–127.
Google Scholar
[19]
P. Dymáček, K. Milička: Creep small-punch testing and its numerical simulations, Mater. Sci. Eng. A 510-511 (2009) 444–449.
DOI: 10.1016/j.msea.2008.06.053
Google Scholar
[20]
P. Dymáček, S. Seitl, K. Milička, F. Dobeš: Influence of friction on stress and strain distributions in small punch creep test models, Key Eng. Mater. 417–418 (2010) 561-564.
DOI: 10.4028/www.scientific.net/kem.417-418.561
Google Scholar
[21]
D. Andrés, P. Dymáček: Study of the upper die clamping conditions in the small punch test, Theor. Appl. Fract. Mech. 86 (2016) 117–123.
DOI: 10.1016/j.tafmec.2016.07.012
Google Scholar
[22]
P. Dymáček: Recent developments in small punch testing: Applications at elevated temperatures, Theor. Appl. Fract. Mech. 86 (2016) 25–33.
DOI: 10.1016/j.tafmec.2016.09.013
Google Scholar
[23]
P. Dymáček, M. Ječmínka, M. Abendroth: Prediction of static material properties of P92 steel based on small punch test, in: B. Strnadel (Ed. ), New Methods of Damage and Failure Analysis of Structural Parts, VŠB-TU Ostrava, 2012, p.279–286.
Google Scholar
[24]
M. Abendroth: Identification of Creep Properties for P91 Steels at High Temperatures Using the Small Punch Test, Metallurgical Journal (Hutnické listy) 63 (2010) 39–43.
Google Scholar