Composite Peening - A Novel Processing Technology for Graded Reinforced Aluminium Matrix Composites

Article Preview

Abstract:

Recently, the attention paid to Metal Matrix Composites (MMCs) has increased markedly. In particular, particle-reinforced MMCs are outstanding due to superior specific properties and their wear resistance. In order to further improve material utilization, recent investigations with local reinforcements in highly stressed component sections, the so-called Functionally Graded Metal Matrix Composites (FGMMC), are concerned. The production of such FGMMC was realized with composite peening - a modified process on the basis of micro shot peening. Due to this solid-phase process, ceramic particles can be introduced into regions close to the boundary layer. As preliminary studies on tin show, ceramic particles can be introduced close to the specimen surface even at room temperature. By varying process parameters, in particular by increasing the temperature, the penetration depth of the particles can be significantly increased. In case of aluminium as base material, an input of particles into the surface could be observed at a process temperature of 150 °C. The combination of aluminium with reinforced ceramic particles makes this process interesting for lightweight, wear-resistant and cyclically highly stressed structural components. Using composite peening to produce FGMMCs is a novel, economic approach.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-144

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Srivatsan, M. Al-Hajri, M. Petraroli, B. Hotton, P. Lam, Influence of silicon carbide particulate reinforcement on quasi static and cyclic fatigue fracture behavior of 6061 aluminum alloy composites, Materials Science and Engineering: A 325 (2002).

DOI: 10.1016/s0921-5093(01)01444-7

Google Scholar

[2] C. Kaynak, S. Boylu, Effects of SiC particulates on the fatigue behaviour of an Al-alloy matrix composite, Materials & Design 27 (2006) 776–782.

DOI: 10.1016/j.matdes.2005.01.009

Google Scholar

[3] N. Chawla, C. Andres, L.C. Davis, J.W. Jones, J.E. Allison, The interactive role of inclusions and SiC reinforcement on the high-cycle fatigue resistance of particle reinforced metal matrix composites, Metall and Mat Trans A 31 (2000) 951–957.

DOI: 10.1007/s11661-000-1013-2

Google Scholar

[4] Y. Sugimura, S. Suresh, Effects of sic content on fatigue crack growth in, Metallurgical Transactions A 23A (1992) 2231–2242.

DOI: 10.1007/bf02646016

Google Scholar

[5] N. Chawla, C. Andres, J.W. Jones, J.E. Allison, Effect of SiC Volume Fraction and Particle Size on the Fatigue Resistance of a 2080 Al/SiCp Composite, Metallurgical and Materials Transactions A 29 (1998) 2843–2854.

DOI: 10.1007/s11661-998-0325-5

Google Scholar

[6] J.N. Hall, J. Wayne Jones, A.K. Sachdev, Particle size, volume fraction and matrix strength effects on fatigue behavior and particle fracture in 2124 aluminum-SiCp composites, Materials Science and Engineering: A 183 (1994) 69–80.

DOI: 10.1016/0921-5093(94)90891-5

Google Scholar

[7] D.P. Myriounis, S.T. Hasan, Fatigue Behaviour of Al/Al203 Metal Matrix Composites, Kazan, Russia, (2012).

Google Scholar

[8] L. Chingshen, F. Ellyin, Fatigue damage and its localization in particulate metal matrix composites, Materials Science and Engineering: A 214 (1996) 115–121.

DOI: 10.1016/0921-5093(96)10250-1

Google Scholar

[9] S.C. Tjong, G.S. Wang, Y. -. Mai, High cycle fatigue response of in-situ Al-based composites containing TiB2 and Al2O3 submicron particles, Composites Science and Technology 65 (2005) 1537–1546.

DOI: 10.1016/j.compscitech.2005.01.012

Google Scholar

[10] B. Kieback, A. Neubrand, H. Riedel, Processing techniques for functionally graded materials, Materials Science and Engineering: A 362 (2003) 81–106.

DOI: 10.1016/s0921-5093(03)00578-1

Google Scholar

[11] A. Bishop, C. -Y. Lin, M. Navaratnam, D. Rawlings, B. McShane, A functionally gradient material produced by a powder metallurgical process, Journal of Material Science Letters 12 (1993) 1516–1518.

DOI: 10.1007/bf00277083

Google Scholar

[12] U. Birth, M. Joensson, B. Kieback, Powder Metallurgical Processing and Properties of Copper/Tungsten Gradients, MSF 308-311 (1999) 766–773.

DOI: 10.4028/www.scientific.net/msf.308-311.766

Google Scholar

[13] E. Foroozmehr, R. Saraffi, S. Hamid, R. Kovacevic, Synthesizing of Functionally Graded Surface Composites by Laser Powder Deposition Process for Slurry Erosion Applications, in: F.J. Fabozzi, V. Kothari (Eds. ), Introduction to Securitization, John Wiley & Sons, Inc, Hoboken, NJ, USA, 2008, p.1.

Google Scholar

[14] O. Eso, Z. Fang, A. Griffo, Liquid phase sintering of functionally graded WC–Co composites, International Journal of Refractory Metals and Hard Materials 23 (2005) 233–241.

DOI: 10.1016/j.ijrmhm.2005.04.017

Google Scholar

[15] J.F. Groves, H. Wadley, Functionally graded materials synthesis via low vacuum directed vapor deposition, Composites Part B: Engineering 28 (1997) 57–69.

DOI: 10.1016/s1359-8368(96)00023-6

Google Scholar

[16] A. Mortensen, S. Suresh, Functionally graded metals and metal-ceramic composites: Part 1 Processing, International Materials Review 40 (1995) 239–265.

DOI: 10.1179/imr.1995.40.6.239

Google Scholar

[17] H. Gutzmann, S. Fresse, F. Gärtner, T. Klassen, Cold Gas Spreaying of ceramics using the example of titanium dioxide, in: DVS Media GmbH (Ed. ), ITSC 2011: International Thermal Spray Conference & Exposition; abstracts (including manuscripts on CD-ROM) of the conference in Hamburg on September 27 - 29, 2011 in the context of DVS Congress and DVS Expo, DVS Media, Düsseldorf, 2011, p.391.

DOI: 10.31399/asm.cp.itsc2011p0369

Google Scholar

[18] I. Ozdemir, K. Ogawa, K. Sato, D. Seo, iron boride coatings produced by cold spray processes, in: DVS Media GmbH (Ed. ), ITSC 2011: International Thermal Spray Conference & Exposition; abstracts (including manuscripts on CD-ROM) of the conference in Hamburg on September 27 - 29, 2011 in the context of DVS Congress and DVS Expo, DVS Media, Düsseldorf, 2011, p.1096.

DOI: 10.31399/asm.cp.itsc2011p1074

Google Scholar

[19] R. Jendrzejewski, K. van Acker, D. Vanhoyweghen, G. Śliwiński, Metal matrix composite production by means of laser dispersing of SiC and WC powder in Al alloy, Applied Surface Science 255 (2009) 5584–5587.

DOI: 10.1016/j.apsusc.2008.09.048

Google Scholar

[20] Ö. Savaş, R. Kayikci, F. Ficici, S. Köksal, Production of Functionally Graded AlB2/Al-4%Mg Composite by Centrifugal Casting, PEN 1 (2013).

DOI: 10.21533/pen.v1i2.23

Google Scholar

[21] Y. Watanabe, A. Kawamoto, K. Matsuda, Particle size distributions in functionally graded materials fabricated by the centrifugal solid-particle method, Composites Science and Technology 62 (2002) 881–888.

DOI: 10.1016/s0266-3538(02)00023-4

Google Scholar

[22] Y. Watanabe, N. Yamanaka, Y. Fukui, Control of composition gradient in a metal-ceramic functionally graded material manufactured by the centrifugal method, Composites Part A: Applied Science and Manufacturing 29 (1998) 595–601.

DOI: 10.1016/s1359-835x(97)00121-8

Google Scholar

[23] M. Ando, H. Kitano, H. Usami, T. Endo, Applicability of fine particle peening on surface modification of aluminum alloy 223–227.

Google Scholar

[24] H. Ishibashi, H. Tobimatsu, K. Hayashi, T. Matsumoto, A.P. Tomsia, E. Saiz, Characterization of Mo-SiO2 functionally graded materials, Metall and Mat Trans A 31 (2000) 299–308.

DOI: 10.1007/s11661-000-0074-6

Google Scholar

[25] N. Chawla, Y. -L. Shen, Mechanical Behavior of Particle Reinforced Metal Matrix Composites, Adv. Eng. Mater. 3 (2001) 357–370.

DOI: 10.1002/1527-2648(200106)3:6<357::aid-adem357>3.0.co;2-i

Google Scholar

[26] V. Schulze, J. Hoffmeister, M. Klemenz, Correlation of Mechanical Surface Treatments, induced Surface States and Fatigue Performance of Steel Components, Procedia Engineering 19 (2011) 324–330.

DOI: 10.1016/j.proeng.2011.11.120

Google Scholar

[27] B. Scholtes, O. Vöhringer, Ursachen, Ermittlung und Bewertung von Randschichtveränderungen durch Kugelstrahlen, Mat. -wiss. u. Werkstofftech. 24 (1993) 421–431.

DOI: 10.1002/mawe.19930241206

Google Scholar

[28] H. Wohlfahrt (Ed. ), Mechanische Oberflächenbehandlungen: Grundlagen, Bauteileigenschaften, Anwendungen, Wiley-VCH, Weinheim, (2000).

Google Scholar