High Strain Rate Compression Testing of Hot-Pressed TRIP/TWIP-Matrix-Composites

Article Preview

Abstract:

Metal matrix composites with ceramic reinforcements such as particles or fibers have come into focus during the past decades due to rising requirements on engineering materials. In this work, composite materials out of high-alloy CrMnNi-steel matrices with varying Ni-contents (3 wt.% and 9 wt.%) and 10 vol.% Mg-PSZ were processed by hot-pressing. The variation in Ni-content resulted in a change in stacking fault energy (SFE) which significantly influenced the deformation mechanisms. The mechanical behavior of the developed composites was investigated in a wide strain rate range between 0.0004 s-1 and 2300 s-1 under compressive loading. This was done by a servohydraulic testing system, a drop weight tower, and a Split-Hopkinson Pressure Bar for the high strain rates. To study the influence on the deformation mechanisms such as martensitic transformations and/or twinning, interrupted tests were also carried out at 25 % compressive strain. Subsequent microstructural examinations were done by a magnetic balance to measure the quantity of α’-martensite as well as by scanning electron microscopy (SEM). The results show an increase of strength and strain hardening with decreasing SFE of the matrix due to increased α’-martensite formation. The addition of the Mg-PSZ particles resulted in further strengthening over almost the entire deformation range for all investigated composites. At high strain rates quasi-adiabatic heating suppressed the martensite transformation and reduced the strain hardening capacity of the matrix. Nonetheless the particle reinforcement retains its strengthening effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

113-120

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Chawla, K. K. Chawla, Metal-matrix composites in ground transportation, JOM 58 (2006) 67-70.

DOI: 10.1007/s11837-006-0231-5

Google Scholar

[2] Q. Qi, Y. Liu, Z. Huang, Promising metal matrix composites (TiC/Ni–Cr) for intermediate-temperature solid oxide fuel cell (SOFC) interconnect applications, Scr. Mater. 109 (2015) 56-60.

DOI: 10.1016/j.scriptamat.2015.07.017

Google Scholar

[3] S. Martin, S. Richter, S. Decker, U. Martin, L. Krüger, D. Rafaja, Reinforcing mechanisms of Mg-PSZ particles in highly-alloyed TRIP steel, Steel Res. Int. 82 (2011) 1133-1140.

DOI: 10.1002/srin.201100099

Google Scholar

[4] D. Ehinger, L. Krüger, U. Martin, C. Weigelt, C. G. Aneziris, Buckling and crush resistance of high-density TRIP-steel and TRIP-matrix composite honeycombs to out-of-plane compressive load, Int. J. Solids Struct. 66 (2015) 207-217.

DOI: 10.1016/j.ijsolstr.2015.02.052

Google Scholar

[5] C. Weigelt, C. G. Aneziris, D. Ehinger, R. Eckner, L. Krüger, C. Ullrich, D. Rafaja, Effect of zirconia and aluminium titanate on the mechanical properties of transformation-induced plasticity-matrix composite materials, J. Compos. Mater. 49 (2015).

DOI: 10.1177/0021998314567698

Google Scholar

[6] A. Weiß, H. Gutte, A. Jahn, P. R. Scheller, Stainless steels with TRIP/TWIP/SBIP effect, Materialwiss. Werkstofftech. 40 (2009) 606-611.

DOI: 10.1002/mawe.200800361

Google Scholar

[7] O. Bouaziz, H. Zurob, M. Huang, Driving force and logic of development of advanced high strength steels for automotive applications, Steel Res. Int. 84 (2013) 937-947.

DOI: 10.1002/srin.201200288

Google Scholar

[8] A. Weiß, H. Gutte, M. Radtke, P. R. Scheller, Rustproof austenitic cast steel, Method for production and Use thereof, Patent WO/2008/00972225 (2008).

Google Scholar

[9] K. Nohara, Y. Ono, Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels, J. of ISIJ 63 (1977) 212-222.

DOI: 10.2355/tetsutohagane1955.63.5_772

Google Scholar

[10] Q. -X- Dai, A. -D. Wang, X. -N. Cheng, X. -M. Luo, Stacking fault energy of cryogenic austenitic steels, Chin. Phys. 11 (2002) 596-600.

Google Scholar

[11] D. J. Frew, M. J. Forrestal, W. Chen, Pulse shaping techniques for testing elastic-plastic materials with a Split Hopkinson Pressure Bar. Exp. Mech. 45 (2005) 186-195.

DOI: 10.1007/bf02428192

Google Scholar

[12] J. C. Gong, L. E. Malvern, D. A. Jenkins, Dispersion investigation in the Split Hopkinson Pressure Bar, J. Eng. Mater. Technol. 112 (1990) 309-314.

DOI: 10.1115/1.2903329

Google Scholar

[13] L. Krüger, S. Wolf, S. Martin, U. Martin, A. Jahn, A. Weiß, P. R. Scheller, Strain rate dependent flow stress and energy absorption behaviour of cast CrMnNi TRIP/TWIP steels, Steel Res. Int 82 (2011) 1087-1093.

DOI: 10.1002/srin.201100067

Google Scholar

[14] L. W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krüger, K. P. Staudhammer, A basic approach for strain rate dependent energy conversion including heat transfer effects: An experimental and numerical study, J. Mater. Process. Technol. 182 (2007).

DOI: 10.1016/j.jmatprotec.2006.07.040

Google Scholar

[15] S. Martin, S. Wolf, S. Decker, L. Krüger, U. Martin, Deformation bands in high-alloy austenitic 16Cr6Mn6Ni TRIP steel: Phase transformation and its consequences on strain hardening at room temperature, Steel Res. Int. 86 (2015) 1187-1196.

DOI: 10.1002/srin.201500005

Google Scholar

[16] C. Baumgart, D. Ehinger, C. Weigelt, L. Krüger, C. G. Aneziris, Comparative study of TRIP/TWIP assisted high density composite honeycomb structures under compressive load, Compos. Struct. 136 (2016) 297-304.

DOI: 10.1016/j.compstruct.2015.09.053

Google Scholar

[17] S. Decker, L. Krüger, S. Richter, S. Martin, U. Martin, Strain-rate-dependent flow stress and failure of an Mg-PSZ reinforced TRIP matrix composite produced by Spark Plasma Sintering, Steel Res. Int. 83 (2012) 521-528.

DOI: 10.1002/srin.201100268

Google Scholar

[18] P. S. Follansbee, U. F. Kocks, A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable, Acta metall. 36 (1988) 81-93.

DOI: 10.1016/0001-6160(88)90030-2

Google Scholar

[19] T. S. Byun, On the stress dependence of partial dislocation separation and deformation microstructure in austenitic stainless steels, Acta Mater. 51 (2003) 3063-3071.

DOI: 10.1016/s1359-6454(03)00117-4

Google Scholar

[20] J. Talonen, H. Hänninen, Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels, Acta Mater. 55 (2007) 6108-6118.

DOI: 10.1016/j.actamat.2007.07.015

Google Scholar