Adaptation of TiC Hard Particles Properties and Morphology in Metal Matrix Composites by Refractory Elements

Article Preview

Abstract:

High mechanical loads, corrosion, and abrasion decrease the lifetime of tools. One way to increase the wear resistance of tool materials can be achieved by adding hard particles to the metal matrix such as titanium carbide, which protect the softer metal matrix against abrasive particles. This material concept is designated as metal matrix composite (MMC). Ferro-Titanit® is such MMC material, possessing high wear and a simultaneously high corrosion resistance, for which reason this material is used in the polymers industry. The material concept is based on a corrosion-resistant Fe-base matrix with up to 45 vol% titanium carbide (TiC) as a hard particle addition to improve the wear resistance against abrasion. These TiC hard particles must be adapted to the present tribological system in terms of hardness, size and morphology. This study shows how the size and morphology of TiC hard particles can be influenced by the refractory element niobium (Nb). Therefore, the element Nb was added with 2 and 4 mass% to the soft-martensitic Ferro-Titanit® Grade Nikro128. The investigated materials were compacted by sintering, and the densified microstructure was further characterized by scanning electron microscopy (SEM), energy dispersive spectrometry (EDX), and optical image analyses. Furthermore, microstructure and properties of the compacted Nb-alloyed samples were compared to the reference material Nikro128. The results show that the addition of Nb influences the morphology, size and chemical composition of the TiC hard particle. These changes in the hard phase characteristics also influence the materials properties. It was shown that the phase niobium carbide (NbC) is formed around the TiC during the densification process, leading to a change in morphology and size of the TiC.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-105

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Berns, H, 1998, Hartlegierungen und Hartverbundwerkstoffe, Springer Verlag.

Google Scholar

[2] W. Theisen, Herstellung verschleißbeständiger Metallmatrix-Verbunde auf Fe-Basis, Materialwissenschaft und Werkstofftechnik 36 (2005), 360-364.

DOI: 10.1002/mawe.200500886

Google Scholar

[3] Deutsche Edelstahlwerke GmbH: Datenblatt Ferro-Titanit® Nikro128 (2007).

Google Scholar

[4] H. Hill, S. Weber, S. Huth, P. Niederhofer, W. Theisen, The impact of processing on microstructure, single phase properties and wear resistance of MMCs, Wear 271, 2011, 1895-(1902).

DOI: 10.1016/j.wear.2010.11.031

Google Scholar

[5] P. Schütte, J. Garcia, W. Theisen, Sintern von Stahlpulvern mittels Stromunterstützung, DGM-Tagung Metallurgraphie EUROGRESS Aachen (2009).

Google Scholar

[6] P. Schütte, Aufbau einer Kurzzeitsinteranlage zur Herstellung verschleiß-beständiger Verbundwerkstoffe, Dissertation, Ruhr-Universität Bochum (2012).

Google Scholar

[7] D. -I. Chun, D. -Y. Kim, K. -Y. Eun, Microstructural Evolution during the Sintering of TiC-Mo-Ni Cermets, Journal of the American Ceramic Society 76 (8) (1993), p.2049–(2052).

DOI: 10.1111/j.1151-2916.1993.tb08331.x

Google Scholar

[8] J. Pirso, M. Viljus, K. Juhani, M. Kuningas, Three-body abrasive wear of TiC-NiMo cermets, Tribology International 43 (2010) 340-346.

DOI: 10.1016/j.triboint.2009.06.014

Google Scholar

[9] H. Holleck, Binäre und ternäre Carbide und Nitride der Übergangsmetalle und ihre Phasenbeziehung, Kernforschungszentrum Karlsruhe, Institut für Material und Festkörperforschung (1981).

Google Scholar

[10] V. K. Lakshmanan, J. S. Kirkaldy, Solubility product for niobium carbide in austenite, Metallurgical Transactions A 15 (3) (1984), 541–544.

DOI: 10.1007/bf02644978

Google Scholar

[11] K. A. Taylor, Solubility products for titanium-, vanadium-, and niobium-carbide in ferrite, Scripta Metallurgica et Materialia 32 (1) (1995), 7–12.

DOI: 10.1016/s0956-716x(99)80002-8

Google Scholar

[12] H. P Latscha, H. A. Klein, Anorganische Chemie: Chemie-Basiswissen I , Springer-Verlag Berlin Heidelberg, (2007).

Google Scholar

[13] H. H. Binder: Lexikon der chemischen Elemente: Das Periodensystem in Fakten, Zahlen und Daten, Stuttgart: S. Hirzel, 1999 (siehe S. 62).

Google Scholar

[14] E. V Sokolova, N. Frage, Yu. G. Gurevich, V.I. Chumanov, Interaction of titanium carbide with R6M5 steel, Soviet Powder Metallurgy and Metal Ceramics 30 (1) (1991), 60–63.

DOI: 10.1007/bf00793403

Google Scholar

[15] M. Kiviö, L. Holappa, T. Yoshikawa, T. Tanaka, Interfacial Phenomena in Fe-TiC Systems and the Effect of Cr and Ni, High Temperature Materials and Processes 31 (4-5) (2012), 645-656.

DOI: 10.1515/htmp-2012-0102

Google Scholar

[16] M. Kiviö, L. Holappa, S. Louhenkilpi, M. Nakamoto, T. Tanaka, Studies on Interfacial Phenomena in Titanium Carbide/Liquid Steel Systems for Development of Functionally Graded Material, Metallurgical and Materials Transactions B 47 (4) (2016).

DOI: 10.1007/s11663-016-0658-1

Google Scholar