Toughening of Glass Fiber Reinforced Unsaturated Polyester Composites by Core-Shell Particles

Article Preview

Abstract:

This study focused on the examination of unsaturated polyester resin based continuous glass filament mat reinforced composites (GFRP) and the modification by core-shell rubber particles (CSR). The goal was to evaluate the effect of CSR toughening on processability, mechanical properties and impact strength as well as the interaction with inorganic color particles in the submicron range on the GFRP. The interlaminar fracture toughness GIc of the modified GFRP was improved by about 20% compared to the neat GFRP by using only 2 wt-% of the CSR modifier, while only marginally increasing the viscosity of the reactive mixture. The responsible mechanisms were found to be local shear yielding of the matrix and an improved fiber-matrix adhesion. The hybridization of inorganic color particles and CSR reduced the interlaminar fracture toughness of the laminate, which could be ascribed to the formation of pores due to the introduction of the oxide particles. However, the impact behavior of the GFRP was positively affected.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

74-81

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. W. Ehrenstein, Faserverbund-Kunststoffe: Werkstoffe, Verarbeitung, Eigenschaften, 2nd ed., Hanser, München, (2006).

DOI: 10.3139/9783446457546.fm

Google Scholar

[2] A. S. Argon, R. E. Cohen, Toughenability of polymers, Polymer, 44 (2003) 6013-6032.

DOI: 10.1016/s0032-3861(03)00546-9

Google Scholar

[3] B. Wetzel, P. Rosso, F. Haupert, K. Friedrich, Epoxy Nanocomposites, Eng. Fract. Mech., 73 (2006) 2375-2398.

DOI: 10.1016/j.engfracmech.2006.05.018

Google Scholar

[4] A. F. Yee, R. A. Pearson, Toughening mechanisms in elastomer-modified epoxies, J. Mat. Sci., 21 (1986) 2462-2474.

DOI: 10.1007/bf01114293

Google Scholar

[5] A. J. Kinloch, Mechanics and mechanisms of fracture of thermosetting epoxy polymers, in: Epoxy Resins and Composites I, Vol. 72, Advances in Polymer Science, Springer Berlin Heidelberg 1985, pp.45-67.

DOI: 10.1007/3-540-15546-5_2

Google Scholar

[6] I. Srivastava, N. Koratkar, Fatigue and fracture toughness of epoxy nanocomposites, JOM, 62 (2010) 50-57.

DOI: 10.1007/s11837-010-0032-8

Google Scholar

[7] Q. Zhang, L. A. Archer, Poly(ethylene oxide)/Silica Nanocomposites: Structure and Rheology, Langmuir, 18 (2002), 10435-10442.

DOI: 10.1021/la026338j

Google Scholar

[8] J. N. Sultan, F. J. McGarry, Effect of rubber particle size on deformation mechanisms in glassy epoxy, Polym. Eng. Sci., 13 (1973) 29-34.

DOI: 10.1002/pen.760130105

Google Scholar

[9] G. A. Crosbie, M. G. Phillips, Toughening of polyester resins by rubber modification, J. Mat. Sci., 20 (1985), 182-192.

DOI: 10.1007/bf00555911

Google Scholar

[10] E. Martuscelli, P. Musto, G. Ragosta, G. Scarinzi, Reactive blending of thermosets: Molecular, morphological and mechanical analysis, Angew. Makromol. Chem., 217 (1994) 159-190.

DOI: 10.1002/apmc.1994.052170115

Google Scholar

[11] B. S. Hayes, J. C. Seferis, Modification of thermosetting resins and composites through preformed polymer particles, Polym. Compos., 22 (2001) 451-467.

DOI: 10.1002/pc.10551

Google Scholar

[12] R. A. Pearson, A. F. Yee, Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies, J. Mat. Sci., 26 (1991) 3828-3844.

DOI: 10.1007/bf01184979

Google Scholar

[13] Y. -J. Huang, J. -H. Wu, J. -G. Liang, M. -W. Hsu, J. -K. Ma, Toughening of unsaturated polyester resins with core–shell rubbers, J. Appl. Polym. Sci., 107 (2008) 939-950.

DOI: 10.1002/app.25159

Google Scholar

[14] L. Becu-Longuet, A. Bonnet, C. Pichot, H. Sautereau, A. Maazouz, Influence of the particle structure and size on the rheological and mechanical properties, J. Appl. Polym. Sci., 72 (1999) 849-858.

DOI: 10.1002/(sici)1097-4628(19990509)72:6<849::aid-app10>3.0.co;2-r

Google Scholar

[15] M. Ahmadi, M. R. Moghbeli, M. M. Shokrieh, Rubber modification of unsaturated polyester resin with core-shell rubber particles, Polym. Eng. Sci., 52 (2012) 1928-(1937).

DOI: 10.1002/pen.23154

Google Scholar

[16] K. Xiao, L. Ye, Y. Kwok, Effects of pre-cracking methods on fracture behaviour of an Araldite-F epoxy and its rubber-modified systems, J. Mat. Sci., 33 (1998) 2831-2836.

Google Scholar

[17] A. J. Kinloch, R. J. Young, Fracture Behaviour of Polymers, Springer, Dordrecht (1995).

Google Scholar

[18] Low Temperature Impact Test, Association of Rotational Molders International, Vers. 4, (2003).

Google Scholar

[19] W. W. Feng, K. L. Reifsnider, G. P. Sendeckyj, T. T. Chiao, W. S. Johnson, G. L. Rodericks, W. W. Stinchcomb, L. de Vore, D. L. Hunston, Composite Interlaminar Fracture, J. Compos. Technol. Res., 6 (1984) 176ff.

DOI: 10.1520/ctr10842j

Google Scholar

[20] R. Bagheri, R. A. Pearson, Role of particle cavitation in rubber-toughened epoxies, Polymer, 37 (1996) 4529-4538.

DOI: 10.1016/0032-3861(96)00295-9

Google Scholar