Development of Thermoplastic Composites for Visible Parts in Automotive

Article Preview

Abstract:

In order to reduce CO2 emissions, for the automotive industry, the most promising area of research is lightweight construction. Next to weight reduction, lightweight materials like fiber reinforced thermoplastic composites (FRTC) may also improve mechanical properties of vehicle body parts. FRTCs, so-called organic sheets, have the potential for large scale series production and they can be back moulded due to the thermoplastic matrix. On the other hand high production cycle times and a poor surface quality are limiting their potential. Therefore, ITA’s current research approaches these problems in two ways. Nanomodified materials and a new tool concept for heat pressing are going hand in hand and may lead to the technology’s breakthrough.To reduce the cycle times of the production of FRTCs innovative and modified matrix systems are investigated. The goal of the public founded project “VarioOrgano” is to analyze the potential of these modified yarns and the tool system during the FRTC production. Moreover, the capability of these composites in visible parts in automotive applications is investigated. Therefore, the whole process chain from compounding, to melt spinning, commingling and consolidation with a heat press is investigated.This paper shows the production steps along the process chain to produce these FRTCs with focus on hybrid yarn development and production.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-69

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. H. Henninger, Beitrag zur Entwicklung neuartiger Fertigungsverfahren zur Herstellung von bauteilen aus kontinuierlich faserverstärkten Thermoplasten, Dissertation, Kaiserslautern, Tech. Univ., (2005).

Google Scholar

[2] R. Brüll, A. Hütten, G. Seide, T. Gries, Using Nanoscale Fillers to improve the thermal properties of fibre reinforced thermoplastic composites regarding processing times, CAMX 2015, Dallas, Texas, October 26th – 29th (2015).

DOI: 10.1088/1757-899x/139/1/012016

Google Scholar

[3] B. Choi, Entwicklung von Commingling-Hybridgarnen für langfaserverstärkte thermoplastische Verbundwerkstoffe, Dissertation, Dresden, TUDpress, (2005).

Google Scholar

[4] P. Kravaev, Prozesskette für die Herstellung nanomodifizierter thermoplastischer Verbundbauteile, Dissertation, Shaker Verlag, Aachen, Techn. Univ., (2012).

Google Scholar

[5] R. Alagirusamy, R. Fangueiro, V. Ogale, N. Padaki, Hybrid, Yarns and Textile Preforming for Thermoplastic Composites, Textile Progress 38 (2006) 1-71.

DOI: 10.1533/tepr.2006.0004

Google Scholar

[6] F. H. Curzio, Method and apparatus for producing blends of resinous, thermoplastic fiber, and laminated structures produced therefrom, US Patent 4, 539, 249. Date of patent Sep. 3, (1995).

Google Scholar

[7] T. Løgstrup Andersen, A. Lystrup, H. Knudsen, B. Lichscheidt, Glas/PET-fiber hybridgarn til fremstilling af fiberkompositter, Edition 1, Volume 1, Risø: Forskningscenter Risø, A/S Kaj Neckelmann, (1994).

Google Scholar

[8] J. Jakobsen, K. V. Jacobsen, M. M. Jensen, J. Ø. Kristensen, Fremstilling af termoplastiske fiberkompositter ved presning, Aalborg, Institut for Mekanik og Produktion Maskin og Produktion, Sep. 19, (2014).

Google Scholar

[9] T. Raghavalu. P. Durai, H. Lilholt, F. Aviles, T. Løgstrup Andersen, H. Knudsen, Fibre waviness and misalignment measurement of unidirectional glass/LPET commingled composites – Effect on mechanical properties, Risø, 2013, Risoe International Symposium on Materials Science, Proceedings, P. 357.

Google Scholar

[10] R. Alagirusamy, V. Ogale, Commingled and Air Jet-textured Hybrid Yarns for Thermoplastic Composites, Journal of Industrial Textiles 33 (2004) 223-243.

DOI: 10.1177/1528083704044360

Google Scholar

[11] C. Cherif, Textile Werkstoffe für den Leichtbau, Berlin, Heidelberg, DE: Springer, (2011).

Google Scholar

[12] Rebmann, P.; Brüll, R.; Vonberg, K.; Seide, G.; Gries, T., Manufacturing of thermoplastic, unidirectional composites from nanomodified PP/GF hybrid yarns by microwave compression molding, CAMX The Composites and Advanced Materials Expo, September 26-29, 2016, Anaheim, California. - Arlington, VA : ACMA ; Diamond Bar, CA : SAMPE, (2016).

Google Scholar

[13] TUFRov 4510. 2017. PPG Industries, Inc., Pittsburgh, PA. 29. 01. 2017 <http: /www. ppgfiberglass. com/getmedia/db1c14d6-4b68-4a1a-82e1-f261d287fbf9/TUFROV_4510. pdf. aspx>.

Google Scholar