[1]
M. Peters, J. Kumpfert, C.H. Ward, C. Leyens, Titanium alloys for aerospace applications, Advanced Engineering Materials. 5 (2003) 419-427.
DOI: 10.1002/adem.200310095
Google Scholar
[2]
M. Zadra, L. Girardini, High-performance, low-cost titanium metal matrix composites, Materials Science and Engineering: A. 608 (2014) 155-163.
DOI: 10.1016/j.msea.2014.04.066
Google Scholar
[3]
F.C. Campbell, Manufacturing Technology for Aerospace Structural Materials, Chapter 9 - Metal Matrix Composites, Oxford: Elsevier Science, 2006, pp.419-457.
DOI: 10.1016/b978-185617495-4/50009-3
Google Scholar
[4]
S. Li, B. Sun, K. Kondoh, T. Mimoto, H. Imai, Influence of carbon reinforcements on the mechanical properties of Ti composites via powder metallurgy and hot extrusion, Materials Science Forum. (2013) 40-43.
DOI: 10.4028/www.scientific.net/msf.750.40
Google Scholar
[5]
D.R. Ni, L. Geng, J. Zhang, Z.Z. Zheng, Fabrication and tensile properties of in situ TiBw and TiCp hybrid-reinforced titanium matrix composites based on Ti–B4C–C, Materials Science and Engineering: A. 478 (2008) 291-296.
DOI: 10.1016/j.msea.2007.06.004
Google Scholar
[6]
B.V. Radhakrishna Bhat, J. Subramanyam, V.V. Bhanu Prasad, Preparation of Ti-TiB-TiC & Ti-TiB composites by in-situ reaction hot pressing, Materials Science and Engineering: A. 325 (2002) 126-130.
DOI: 10.1016/s0921-5093(01)01412-5
Google Scholar
[7]
T.M.T. Gofrey TMT, P.S. Goodwin, C.M. Ward-Close, Titanium Particulate Metal Matrix Composites–Reinforcement, Production Methods, and Mechanical Properties, Advanced Engineering Materials. 2 (2000) 85-91.
DOI: 10.1002/(sici)1527-2648(200003)2:3<85::aid-adem85>3.0.co;2-u
Google Scholar
[8]
V.S. Balaji, S. Kumaran, Densification and microstructural studies of titanium–boron carbide (B4C) powder mixture during spark plasma sintering, Powder Technology. 264 (2014) 536-540.
DOI: 10.1016/j.powtec.2014.05.050
Google Scholar
[9]
A. Jimoh, I. Sigalas, M. Hermann, In Situ Synthesis of Titanium Matrix Composite (Ti-TiB-TiC) through Sintering of TiH2-B4C, Materials Sciences and Applications. 3 (2012) 30-35.
DOI: 10.4236/msa.2012.31005
Google Scholar
[10]
K.S. Vadayar, S.D. Rani, V.V.B. Prasad, Effect of Boron Carbide Particle Size and Volume Fraction of TiB-TiC Reinforcement on Fractography of PM Processed Titanium Matrix Composites, Procedia Materials Science. 6 (2014) 1329-1335.
DOI: 10.1016/j.mspro.2014.07.111
Google Scholar
[11]
C. Monticelli, A. Frignani, A. Bellosi, G. Brunoro, G. Trabanelli, The corrosion behaviour of titanium diboride in neutral chloride solution, Corrosion Science. 43 (2001) 979-992.
DOI: 10.1016/s0010-938x(00)00120-7
Google Scholar
[12]
ASM-International. Nondestructive Evaluation and Quality Control. ninth ed. Ohio, United State of America: ASM-International, (1989).
Google Scholar
[13]
A. Jimoh, In-situ Particulate-reinforcement of Titanium Matrix Composites with Borides, University of the Witwatersrand, (2010).
Google Scholar
[14]
B.X. Liu, L.J. Huang, L. Geng, B. Kaveendran, B. Wang, X.Q. Song, X.P. Cui, Gradient grain distribution and enhanced properties of novel laminated Ti–TiBw/Ti composites by reaction hot-pressing, Materials Science and Engineering: A. 595 (2014).
DOI: 10.1016/j.msea.2013.12.013
Google Scholar
[15]
B.X. Liu, L.J. Huang, L. Geng, B. Wang, X.P. Cui XP, Effects of reinforcement volume fraction on tensile behaviors of laminated Ti–TiBw/Ti composites, Materials Science and Engineering: A. 610 (2014) 344-349.
DOI: 10.1016/j.msea.2014.05.057
Google Scholar