[1]
M. Goede, M. Stehlin, L. Rafflenbeul, G. Kopp and E. Beeh, Super Light Car–lightweight construction thanks to a multi-material design and function integration, European Transport Research Review 1 (2009) 5-10.
DOI: 10.1007/s12544-008-0001-2
Google Scholar
[2]
B. -A. Behrens, L. Overmeyer, A. Barroi, C. Frischkorn, J. Hermsdorf, S. Kaierle, M. Stonis and A. Huskic, Basic study on the process combination of deposition welding and subsequent hot bulk forming, Production Engineering 6 (2013) 585-591.
DOI: 10.1007/s11740-013-0478-y
Google Scholar
[3]
S. Kaierle, A. Barroi, C. Noelke, J. Hermsdorf, L. Overmeyer und H. Haferkamp, Review on laser deposition welding: from micro to macro, Physics Procedia 39 (2012) 336-345.
DOI: 10.1016/j.phpro.2012.10.046
Google Scholar
[4]
A. Kroner, Hybrid forming is superior to joining technology, Aluminium 2012 Conference, Düsseldorf.
Google Scholar
[5]
R. Leiber, ALUMINUM: The ideal Material for Hybrid Forgings, Materials Forum – Intelligent Lightweight Construction, Hannover Messe (2011).
Google Scholar
[6]
D.J. Politis, J. Lin and T.A. Dean, Investigation of Material Flow in Forging Bi-metal Components, Steel Research International (2012) 231-234.
Google Scholar
[7]
B. -A. Behrens, M. Bistron, A. Kueper, K. Moehwald, Investigation of load adapted gears and shafts manufactured by compound-forging, Journal of Advanced Manufacturing Systems 7 (2008) 175-182.
DOI: 10.1142/s0219686708001292
Google Scholar
[8]
H. Kache, M. Stonis and B. -A. Behrens, Hybridschmieden, wt Werkstatttechnik online 103 (2013) 257-262.
DOI: 10.37544/1436-4980-2013-3-257
Google Scholar
[9]
J. Domblesky, F. Kraft, B. Druecke and B. Sims, Welded preforms for forging, Journal of Materials Processing Technology 171 (2006) 141-149.
DOI: 10.1016/j.jmatprotec.2005.06.066
Google Scholar
[10]
B. -A. Behrens and K. -G. Kosch, Development of the heating and forming strategy in compound forging of hybrid steel-aluminium parts, Materials Science and Engineering Technology 42 (2011) 973-978.
DOI: 10.1002/mawe.201100795
Google Scholar
[11]
B. -A. Behrens, A. Bouguecha, M. Vucetic, A. Huskic, J. Uhe, C. Frischkorn, T. Matthias, A. Stakhieva, D. Duran, S. E. Thürer, O. Golovko and C. Klose, Umformtechnische Herstellung hybrider Lagerbuchsen, wt Werkstattstechnik online 106 (2016).
DOI: 10.37544/1436-4980-2016-10-69
Google Scholar
[12]
B. A. Behrens, M. Bistron, A. Kueper and K. Moehwald, Investigation of load adapted gears and shafts manufactured by compound-forging, Journal of Advanced Manufacturing Systems, 1 (2008) 175-182.
DOI: 10.1142/s0219686708001292
Google Scholar
[13]
T. Altan, G. Ngaile and G. Shen, Cold and hot forging: fundamentals and applications, ASM international, Ohio, (2005).
DOI: 10.31399/asm.tb.chffa.9781627083003
Google Scholar
[14]
M. Kunogi, A new method of cold extrusion, J. Sci. Res. Inst. 50 (1956) 215-246.
Google Scholar
[15]
A. Male and M. Cockcroft, A method for the determination of the coefficient of friction of metals under condition of bulk plastic deformation, J. Inst. Metals (1964–1965) 38–46.
Google Scholar
[16]
T. Kaufhold, Zum Einfluss der Temperatur auf die Eigenschaften von Gesenkoberflächen, Dissertation, Universität Hannover, (1984).
Google Scholar
[17]
T.A. Dean and T. M Silva, Die Temperatures During Production Drop Forging, J. Eng. For Industry 101 (1979) 385-390.
DOI: 10.1115/1.3439524
Google Scholar
[18]
M. Deshpande, Improvements in Hot Forging Processes – Using Alternative Die Materials and Finite Elements Analysis for Wear Prediction and Die Design Optimization, Thesis, The Ohio State University, (2011).
Google Scholar
[19]
E. Moeller, Handbuch Konstruktionswerkstoffe – Auswahl, Eigenschaften, Anwendungen, 2. überarbeitete Auflage, Carl Hanser Verlag München Wien, (2014) pp.263-265.
Google Scholar