FE-Based Design of a Forging Tool System for a Hybrid Bevel Gear

Article Preview

Abstract:

Multi-material solutions offer numerous benefits producing tailored-made hybrid components with enhanced application-optimized properties contrary to conventional monolithic parts. However, designing of corresponding manufacturing processes is often challenging due to various technical aspects. This paper represents a process route for the manufacturing of a hybrid bevel gear by means of tailored forming technology with a focus on die forging and describes the main challenges within the forming stage. Due to local material-specific properties, uncommon material flow and complex geometry of the final part, an individual forming tool system with a geared die was accurately designed. Besides the forming tool system, the FE-based design of the forging process as well as the necessary material characterisation will be presented. Finally, the initial results of the experimental forging investigations are shown.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

544-551

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Goede, M. Stehlin, L. Rafflenbeul, G. Kopp and E. Beeh, Super Light Car–lightweight construction thanks to a multi-material design and function integration, European Transport Research Review 1 (2009) 5-10.

DOI: 10.1007/s12544-008-0001-2

Google Scholar

[2] B. -A. Behrens, L. Overmeyer, A. Barroi, C. Frischkorn, J. Hermsdorf, S. Kaierle, M. Stonis and A. Huskic, Basic study on the process combination of deposition welding and subsequent hot bulk forming, Production Engineering 6 (2013) 585-591.

DOI: 10.1007/s11740-013-0478-y

Google Scholar

[3] S. Kaierle, A. Barroi, C. Noelke, J. Hermsdorf, L. Overmeyer und H. Haferkamp, Review on laser deposition welding: from micro to macro, Physics Procedia 39 (2012) 336-345.

DOI: 10.1016/j.phpro.2012.10.046

Google Scholar

[4] A. Kroner, Hybrid forming is superior to joining technology, Aluminium 2012 Conference, Düsseldorf.

Google Scholar

[5] R. Leiber, ALUMINUM: The ideal Material for Hybrid Forgings, Materials Forum – Intelligent Lightweight Construction, Hannover Messe (2011).

Google Scholar

[6] D.J. Politis, J. Lin and T.A. Dean, Investigation of Material Flow in Forging Bi-metal Components, Steel Research International (2012) 231-234.

Google Scholar

[7] B. -A. Behrens, M. Bistron, A. Kueper, K. Moehwald, Investigation of load adapted gears and shafts manufactured by compound-forging, Journal of Advanced Manufacturing Systems 7 (2008) 175-182.

DOI: 10.1142/s0219686708001292

Google Scholar

[8] H. Kache, M. Stonis and B. -A. Behrens, Hybridschmieden, wt Werkstatttechnik online 103 (2013) 257-262.

DOI: 10.37544/1436-4980-2013-3-257

Google Scholar

[9] J. Domblesky, F. Kraft, B. Druecke and B. Sims, Welded preforms for forging, Journal of Materials Processing Technology 171 (2006) 141-149.

DOI: 10.1016/j.jmatprotec.2005.06.066

Google Scholar

[10] B. -A. Behrens and K. -G. Kosch, Development of the heating and forming strategy in compound forging of hybrid steel-aluminium parts, Materials Science and Engineering Technology 42 (2011) 973-978.

DOI: 10.1002/mawe.201100795

Google Scholar

[11] B. -A. Behrens, A. Bouguecha, M. Vucetic, A. Huskic, J. Uhe, C. Frischkorn, T. Matthias, A. Stakhieva, D. Duran, S. E. Thürer, O. Golovko and C. Klose, Umformtechnische Herstellung hybrider Lagerbuchsen, wt Werkstattstechnik online 106 (2016).

DOI: 10.37544/1436-4980-2016-10-69

Google Scholar

[12] B. A. Behrens, M. Bistron, A. Kueper and K. Moehwald, Investigation of load adapted gears and shafts manufactured by compound-forging, Journal of Advanced Manufacturing Systems, 1 (2008) 175-182.

DOI: 10.1142/s0219686708001292

Google Scholar

[13] T. Altan, G. Ngaile and G. Shen, Cold and hot forging: fundamentals and applications, ASM international, Ohio, (2005).

DOI: 10.31399/asm.tb.chffa.9781627083003

Google Scholar

[14] M. Kunogi, A new method of cold extrusion, J. Sci. Res. Inst. 50 (1956) 215-246.

Google Scholar

[15] A. Male and M. Cockcroft, A method for the determination of the coefficient of friction of metals under condition of bulk plastic deformation, J. Inst. Metals (1964–1965) 38–46.

Google Scholar

[16] T. Kaufhold, Zum Einfluss der Temperatur auf die Eigenschaften von Gesenkoberflächen, Dissertation, Universität Hannover, (1984).

Google Scholar

[17] T.A. Dean and T. M Silva, Die Temperatures During Production Drop Forging, J. Eng. For Industry 101 (1979) 385-390.

DOI: 10.1115/1.3439524

Google Scholar

[18] M. Deshpande, Improvements in Hot Forging Processes – Using Alternative Die Materials and Finite Elements Analysis for Wear Prediction and Die Design Optimization, Thesis, The Ohio State University, (2011).

Google Scholar

[19] E. Moeller, Handbuch Konstruktionswerkstoffe – Auswahl, Eigenschaften, Anwendungen, 2. überarbeitete Auflage, Carl Hanser Verlag München Wien, (2014) pp.263-265.

Google Scholar