Separation of Hybrid Structures for the Reclaim of their Single Components

Article Preview

Abstract:

The main objective for an economic and ecological use of raw materials is the achievement of closed raw material cycles. Because of that, not only the manufacturing procedures are important during the development of new materials but also the recycling processes. Within the increased use of lightweight construction in recent years, the application of multi-material or hybrid structures reach high significance for the automotive industry. In this development, especially the carbon fibre reinforced plastics (CFRP) gained its importance. However, currently there are no recycling strategies available for hybrid structures; complete recycling processes for CFRP are still expandable. This work presents methods for separation of hybrid structures made of metal and CFRP, as well as the corresponding process windows and the boundary conditions. The separation is performed by introduction of thermal heat and the behaviour of these bonded compounds is analyzed based on shear tensile tests. The results of these studies are used to develop a complete recycling process for reclamation of hybrid structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

568-575

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Steigemann, Werkstoff- & ressourcenschonende Recyclingstrategien, Lightweight Design, 5/2012, pp.26-31.

DOI: 10.1365/s35725-012-0019-1

Google Scholar

[2] A. Jäschke, U. Dajek, Dachrahmen in Hybridbauweise, Reprint of VDI-Proceedings No. 4260, VDI-Publishing, Düsseldorf (Germany), (2004) pp.25-45.

Google Scholar

[3] C. Lauter, M. Frantz, T. Tröster, Großserientaugliche Herstellung von Hybridwerkstoffen durch Prepregpressen, Lightweight Design, 4/2011, (2011) pp.48-54.

DOI: 10.1365/s35725-011-0044-5

Google Scholar

[4] Bundesrechtsverordnung: Verordnung über die Überlassung, Rücknahme und umweltverträgliche Entsorgung von Altfahrzeugen (Altfahrzeug-Verordnung – AltfahrzeugV), (2002) Germany.

Google Scholar

[5] S. Niemeyer, G. Ziegmann, Recycling kohlenstofffaserverstärkter Kunststoffe, Recycling und Rohstoffe, Vol. 5, (2012) pp.885-892.

Google Scholar

[6] J. Yang, J. Liub, W. Liua, J. Wanga, T. Tangb, Recycling of carbon fibre reinforced epoxy resin composites under various oxygen concentrations in nitrogen–oxygen atmosphere, Journal of Analytical and Applied Pyrolysis 112 (2015) p.253–261.

DOI: 10.1016/j.jaap.2015.01.017

Google Scholar

[7] S. Pimenta, S. Pinho, Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook, Waste Management No. 31, (2011) pp.378-392.

DOI: 10.1016/j.wasman.2010.09.019

Google Scholar

[8] L.O. Meyer, K. Schulte, E. Grove-Nielsen, CFRP-recycling following a pyrolysis route: process optimization and potentials, J. Compos. Mater. 43 (2009) p.1121–1132.

DOI: 10.1177/0021998308097737

Google Scholar

[9] T. Reussmann, E. Oberländer, M. Danzer, A. Honderboom, Verbundwerkstoffe aus Recyclingkarbonfasern, Lightweight Design, Vol. 6, (2014) pp.18-24.

DOI: 10.1007/s35725-015-0038-9

Google Scholar

[10] J. Wagner, M. Wilhelm, H. Baier, U. Füssel, T. Richter, Experimental analysis of damage propagetion in riveted CFRP-steel struktures by thermal loads, International Journal of Advanced Manufacturing Technology No. 75, (2014) pp.1103-1113.

DOI: 10.1007/s00170-014-6197-5

Google Scholar

[11] M. Hofmann, B. Gulich, Verarbeitung von rezyklierten Carbonfasern für die Herstellung von Verbundbauteilen. Lightweight Design, Vol. 6, (2013) pp.20-23.

DOI: 10.1365/s35725-013-0161-4

Google Scholar