Properties of Second Life Carbon Fibre Reinforced Polymers

Article Preview

Abstract:

In this study different materials made out of cut-off as well as reclained carbon fibres (rCF) are described and compared. For this benchmark nonwovens, compounds, SMC, BMC, as well as standard lightweight materials like high alloy steels, aluminium and magnesium are taken into account. Specific mechanical properties like modulus and tensile strength are used to show the lightweight potential of recycled carbon fibre materials in ashby charts. It is shown that rCF products can substitute glass fibre applications and are also comparable to metals and alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

562-567

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Kraus (CCeV), M. Kühnel (CCeV), E. Witten (AVK), Composites-Marktbericht 2015, Marktentwicklungen, Trends, Ausblicke und Herausforderungen.

Google Scholar

[2] T. Roberts, The Carbon Fibre Industry Worldwide 2008-2014, An Evaluation of Current Markets and Future Supply and Demand, Materials Technology Publications (2008).

Google Scholar

[3] M. Gehr, Recycled Carbon Fibre: A New Approach to Cost Effective Lightweighting, ReThink - Travelling Conference 16. 11. (2016).

Google Scholar

[4] F. Manis et al., Bewertung der mechanischen und ökologischen Aspekte des thermischen Recyclings, 4. Symposium Rohstoffeffizienz und Rohstoffinnovationen (2016).

Google Scholar

[5] A. Schneller, et al., Recycling of woven carbon fiber patches from laminated CFRP by means of induction heating 20. ICCM (2015).

Google Scholar

[6] D. Achilias et al., Recent Advances in the Chemical Recycling of Polymers (PP, PS, LDPE, HDPE, PVC, PC, Nylon, PMMA), Material Recycling - Trends and Perspectives (2012).

DOI: 10.5772/33457

Google Scholar

[7] A. Greco, et al, (2013): Thermal and chemical treatments of recycled carbon fibres for improved adhesion to polymeric matrix. In: Journal of Composite Materials 47 (3), (2013) 369–377.

DOI: 10.1177/0021998312440133

Google Scholar

[8] G. Oliveux, B. Jean-Luc, E. Salle, Chemical recycling of glass fibre reinforced composites using subcritical water. Composites Part A: Applied Science and Manufacturing 43 (11), (2012) 1809–1818.

DOI: 10.1016/j.compositesa.2012.06.008

Google Scholar

[9] F. Manis, A. Schneller, J. Wölling, Ganzheitliche Recycling-Prozesskette für Carbonfasergewebe und Gelege, Lightweight Design (5), S. 14–19, (2016).

DOI: 10.1007/s35725-016-0048-2

Google Scholar

[10] A. Stevenson, Recycling carbon fibre: State of the art and future developments, International Textile Conference (2016).

Google Scholar

[11] S. Pickering, Processing recovered carbon fibre into nonwovens for polymer composite application, Nonwoven Innovation Academy, Leeds, (2015) 234–249.

Google Scholar

[12] T. Habers, C. Ebel, K. Drechsler, Highly Efficient Production and Characterizsation of CFRP Made from Recycled Carbon Fibres, Sampe Journal 50 (3) (2014) 7-13.

Google Scholar

[13] A. Hohmann et al., MAI Enviro. Vorstudie zur Lebenszyklusanalyse mit ökobilanzieller Bewertung relevanter Fertigungsprozessketten, Fraunhofer Verlag (2015).

Google Scholar

[14] M. Sharma et al., Carbon fiber surfaces and composite interphases, Composites Science and Technology 102, S. 35–50 (2014).

Google Scholar

[15] J. M. Park et al., Effect of thermal treatment temperatures on the reinforcing and interfacial properties of recycled carbon fiber–phenolic composites, Composites Part A: Applied Science and Manufacturing 47, (2012) 156–164.

DOI: 10.1016/j.compositesa.2012.12.002

Google Scholar

[16] MAI Recycling – Entwicklung ressourceneffizienter CFK-Recyclingverfahren und Prozessketten für die künftige Bereitstellung qualitativ hochwertiger rC-Halbzeuge, Förderkennzeichen: 03MAI03A, Abschlussbericht (2015).

Google Scholar

[17] ForCycle - Ressourceneffiziente Faser-Matrix-Separation für das Recycling von Carbonfaserstrukturen, Förderkennzeichen: BAF01SoFo-65339, Abschlussbericht (2017).

Google Scholar

[18] Werkstoff- und Prozessentwicklung für thermoformbare hochleistungsfaserverstärkte Halbzeuge in Serienprozessen, Förderkennzeichen: MF110118, Abschlussbericht (2014).

Google Scholar

[19] P. Wiedemann, CF/TP Recycling –Einblicke aus der Recyclingindustrie, CCeV. AG Thermoplaste 16. 11. (2016).

Google Scholar

[20] C. Georgen, S. Baz, P. Mitschang, InTeKS - Neuartige Organobleche aus recycleten Kohlenstofffasern, Symposium Experience Composites 22. 09. (2016).

Google Scholar

[21] M. L. Longana, Multiple closed loop recycling of carbon fibre composites with the HiPerDiF (High Performance Discontinuous Fibre) method, Composite Structures 153 (2016) 217-277.

DOI: 10.1016/j.compstruct.2016.06.018

Google Scholar

[22] T. A. Turner, N.A. Warrior, S.J. Pickering, Re-Use of carbon fibres in high value moulding compounds & pre-pregs, 17. ICCM (2009).

Google Scholar