A Holistic Approach to Use Multi-Scale Fractions of Dry Carbon Fibre Production Waste in Filled Bulk Moulding Compounds (BMC)

Article Preview

Abstract:

The increasing demand for composites leads to a growing amount of end-of-life materialand production waste. The latter consists of a large fraction of unimpregnated fibre waste which is notsufficiently reprocessed using conventional textile processing procedures as they are either too expensiveor their mechanical performance is too low. Using pieces of dry non-crimp fabrics (patches) ina Bulk Moulding Compound process (BMC) displays a straightforward approach of fabric recycling.Adding fillers to the mixture not only offers the opportunity to modify mechanical and electrical propertiesas well as the costs but also a chance for a more holistic approach of dry fibre recycling, whenconventional fillers like chalk are replaced by ground recycled carbon fibres. In this way, all kindof dry fibre wastes can be reused in one process: Larger offcuts are chopped to smaller rectangularpatches whereas waste fractions of small offcuts are processed to carbon fibre powder as filler andprocessed together with resin to produce BMC materials. Mechanical investigations reveal that thepresented approach shows higher specific properties than the conventional filler without compromisingthe process and material quality.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

583-592

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Pimenta and S. T. Pinho, Recycling carbon fibre reinforced polymers for structural applications: Technology review and market outlook, Waste Management, doi= http: /dx. doi. org/10. 1016/j. wasman. 2010. 09. 019, (2011).

DOI: 10.1016/j.wasman.2010.09.019

Google Scholar

[2] K. Wood, Carbon fiber reclamation: Going commercial, High-Performance Composites, (2010).

Google Scholar

[3] Pickering 2013: www. just − auto. com/interview/recycling − carbon − fibre − composites id132685. aspx, 14. 02. (2017).

Google Scholar

[4] M. L. Longana, N. Ong, H. Yu and K. D. Potter, Multiple closed loop recycling of carbon fibre composites with the HiPerDiF (High Performance Discontinuous Fibre) method, Composite Structures, ISSN = 0263-8223, (2016).

DOI: 10.1016/j.compstruct.2016.06.018

Google Scholar

[5] F. Henning and E. Moeller, Handbuch Leichtbau: Methoden, Werkstoffe, Fertigung, Hanser Verlag, ISBN = 9783446422674, (2011).

DOI: 10.3139/9783446428911

Google Scholar

[6] J. L. Leblanc, Filled Polymers: Science and Industrial Applications, CRC Press, ISBN = 9781439800430, (2009).

Google Scholar

[7] M. Y. Zakaria, A. B. Sulong, J. Sahari and H. Suherman, Effect of the addition of milled carbon fiber as a secondary filler on the electrical conductivity of graphite/epoxy composites for electrical conductive material, Composites Part B: Engineering, 83, ISSN 1359-8368, (2015).

DOI: 10.1016/j.compositesb.2015.08.034

Google Scholar

[8] N. Chand, A. M. Naik, Development and high stress abrasive wear behavior of milled carbon fiber-reinforced epoxy gradient composites, Polymer Composites, Volume 29, Issue 7, (2008).

DOI: 10.1002/pc.20450

Google Scholar

[9] D. Meiners and B. Eversmann, Recycling von Carbonfasern, in K J. Thomé-Kozmiensky and D. Goldmann, Recycling und Rohstoffe, ISBN = 978-3-944310-09-1, Vivis TK Verlag, (2014).

Google Scholar

[10] CAR FiberTec GmbH: www. car-fibertec. de/cf-flex, 14. 02. (2017).

Google Scholar

[11] Haufler Composites GmbH & Co. KG: http: /www. haufler. com/content/carbonfaser/carbonfasermehl, 14. 02. (2017).

Google Scholar

[12] O. Saburow, J. Hüther, R. Maertens, A. Trauth, Y. Kechaou, F. Henning, K. A. Weidenmann, A direct process to reuse dry fiber production waste for recycled carbon fiber bulk molding compounds, Elsevier, Proceedings of 1st CIRP Conference on Composite Materials Parts Manufacturing, submitted (2017).

DOI: 10.1016/j.procir.2017.03.280

Google Scholar

[13] D. Bücheler, A. Kaiser and F. Henning, Using Thermogravimetric Analysis to Determine Carbon Fiber Weight Percentage of Fiber-Reinforced Plastics, Composites Part B: Engineering, 106, ISSN 1359-8368, (2016).

DOI: 10.1016/j.compositesb.2016.09.028

Google Scholar

[14] M. F. Ashby, A. Wanner and C. Fleck, Materials Selection in Mechanical Design: Das Original mit Übersetzungshilfen: Easy-Reading-Ausgabe, Spektrum Akademischer Verlag, ISBN = 9783827417626, (2006).

Google Scholar

[15] EN ISO 527-1: 1996, Kunststoffe - Bestimmung der Zugeigenschaften. Teil 1: Allgemeine Grundsätze (ISO 527-1: 1996).

Google Scholar

[16] EN ISO 527-4: 1997, Kunststoffe - Bestimmung der Zugeigenschaften. Teil 4: Prüfbedingungen für isotrop und anisotrop faserverstärkte Kunststoffverbundwerkstoffe (ISO 527-4: 1997).

DOI: 10.31030/7360910

Google Scholar