Simulation of the Influence of Embedded Inserts on the RTM Filling Behavior Considering Local Fiber Structure

Article Preview

Abstract:

Resin Transfer Molding (RTM) enables an intrinsic manufacturing of fiber reinforced composite parts containing integrated metallic inserts. The inserts are embedded into the fiber layers in the preforming stage of the process and therefore influence the following mold filling. The fiber structure around the embedded insert is strongly influenced by the insert resulting in high local variations of fiber volume fraction which changes the local permeability. This leads to an inhomogenic flow front and can even result in dry spots of the cured part. To predict the formation of air bubbles, a two-phase mold filling simulation is used under consideration of local fiber volume fraction. Local fiber structure is determined using CT-scans of manufactured parts with different orientations of the insert in relation to the preform and to the filling direction. The mold filling simulations allow the evaluation of different filling strategies and show a strong influence of the insert on the local flow front propagation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

681-688

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Potter, K.: Resin Transfer Moulding. Springer Netherlands (1997).

Google Scholar

[2] Kärger, L., Bernath, A., Fritz, F., Galkin, S., Magagnato, D., Oeckerath, A., Schön, A. and Henning, F.: Development and validation of a CAE chain for unidirectional fibre reinforced composite components. Composite Structures 132 (2015).

DOI: 10.1016/j.compstruct.2015.05.047

Google Scholar

[3] Darcy, H.: Les Fontaines publiques de lo ville de Dijon. Dalmont 1856.

Google Scholar

[4] Trochu, F., Gauvin, R. and Gao, D. -M.: Numerical analysis of the resin transfer molding process by the finite element method. Advances in Polymer Technology 12 (1993) 4, S. 329–342.

DOI: 10.1002/adv.1993.060120401

Google Scholar

[5] Bruschke, M. V. and Advani, S. G.: A finite element/control volume approach to mold filling in anisotropic porous media. Polymer Composites 11 (1990) 6, S. 398–405.

DOI: 10.1002/pc.750110613

Google Scholar

[6] Fracchia, C. A., Castro, J. and Tucker III, C. L.: A finite element/control volume simulation of resin transfer mold filling. Proceedings of the American society for composites, 4th technical conference (1989), S. 157–166.

Google Scholar

[7] Trochu, F., Ruiz, E., Achim, V. and Soukane, S.: Advanced numerical simulation of liquid composite molding for process analysis and optimization. Composites Part A: Applied Science and Manufacturing 37 (2006) 6, S. 890–902.

DOI: 10.1016/j.compositesa.2005.06.003

Google Scholar

[8] Magagnato, D., Frey, M., Bernath, A., Steibler, P. and Henning, F.: Experimentelle und numerische Untersuchung der Infiltration bei der RTM-Fertigung. In: A. Wanner, K. A. Weidenmann, Verbundwerkstoffe und Werkstoffverbunde Proc. (2013).

Google Scholar

[9] Ferret, B., Anduze, M. u. Nardari, C.: Metal inserts in structural composite materials manufactured by RTM. Composites Part A: Applied Science and Manufacturing 29 (1998) 5-6, S. 693–700.

DOI: 10.1016/s1359-835x(97)00107-3

Google Scholar

[10] Gebhardt, J., Pottmeyer, F., Fleischer, J. and Weidenmann, K.: Characterization of Metal Inserts Embedded in Carbon Fiber Reinforced Plastics. Materials Science Forum 825-826 (2015), S. 506–513.

DOI: 10.4028/www.scientific.net/msf.825-826.506

Google Scholar

[11] Magagnato, D. and Henning, F.: Process-Oriented Determination of Preform Permeability and Matrix Viscosity during Mold Filling in Resin Transfer Molding. Materials Science Forum 825-826 (2015), S. 822–829.

DOI: 10.4028/www.scientific.net/msf.825-826.822

Google Scholar