[1]
B.A. Grinberg, M.A. Ivanov, Intermetallics Ni3Al i TiAl: microstructure, deformacionnoe povedenie, Ekaterinburg, 2002 (in Russian).
Google Scholar
[2]
P.T. Kolomyshev, Zharostoykie diffuzionnie pokrytiya lopatok GTD, Moscow, 1978 (in Russian).
Google Scholar
[3]
G.V. Samsonov, N.M. Vinnitskii, Tugoplavkie soedineniya. – M: Metallurgy. – 1976 (in Russian).
Google Scholar
[4]
V.S. Sinelnikova Alyuminida / V.S. Sinelnikova, V.A. Podergin, V.N. Rechkin. – Kiev: Naukova thought, 1965 (in Russian).
Google Scholar
[5]
S.C. Deevi, V.K. Sikka, Nickel and iron aluminides: an over vie won properties, processing, and applications, Intermetallics. 4 (5) (1996) 357-375.
DOI: 10.1016/0966-9795(95)00056-9
Google Scholar
[6]
N.S. Stoloff, C. T Liu, S.C. Deevi, Emerging applications of intermetallics, Intermetallics. 8 (2000) 1313-1320.
DOI: 10.1016/s0966-9795(00)00077-7
Google Scholar
[7]
L.I. Shevtsova, T.S. Ogneva, D.O. Mul, M.A. Esikov, A. Yu. Larichkin, V.N. Malikov, Boron-modified Ni3Al intermetallic compound formed by spark plasma sintering of mechanically activated Ni and Al powders, IOP Conference Series: Materials Science and Engineering. 124 (2016).
DOI: 10.1088/1757-899x/124/1/012139
Google Scholar
[8]
L.I. Shevtsova, Structure and mechanical properties of the materials based on the nickel aluminide received on the technology of spark plasma sintering of powder mixtures: thesis. … cand. tech. sci. – Novosibirsk, 2015 (in Russian).
Google Scholar
[9]
F. Akhtar, Synthesis, microstructure and mechanical properties of Al2O3 reinforced Ni3Al matrix composite, Materials Science and Engineering. 499 (2009) 415-420.
DOI: 10.1016/j.msea.2008.09.005
Google Scholar
[10]
M. Tokita, Trends in Advanced SPS (Spark Plasma Sintering) Systems and Technology, Journal of the Society of Powder Technology Japan. 30 (11) (1993) 790-804.
Google Scholar
[11]
N. Saheb, Z. Iqbal, A. Khalil, A. Hakeem, N. Aqeeli, T. Laoui, A. Al-Qutub, R. Kirchner, Spark Plasma Sintering of Metals and Metal Matrix Nanocomposites: A Review, Journal of Nanomaterials. (2012) 1-13.
DOI: 10.1155/2012/983470
Google Scholar
[12]
G. Monastyrsky, P. Ochin, A. Gilchuk, V. Kolomytsev and Y. Koval, The Role of Nano-sized Fraction on Spark Plasma Sintering the Pre- Alloyed Spark-Erosion Powders, Journal of Nano- and Electronic Physics. (2012) 1007-1014.
DOI: 10.4028/www.scientific.net/msf.738-739.451
Google Scholar
[13]
L.I. Shevtsova, A.S. Ivashutenko, N.V. Martyushev and R.I. Kuzmin, Fabrication of the Ni3Al-based alloy formed by spark plasma sintering of VKNA powders, IOP Conference Series: Materials Science and Engineering. 124 (2016).
DOI: 10.1088/1757-899x/124/1/012113
Google Scholar
[14]
L.I. Shevtsova, M.A. Korchagin, A. Thömmes, V.I. Mali, A.G. Anisimov, S. Yu. Nagavkin, Spark plasma sintering of mechanically activated Ni and Al powders, Adv. Mater. Res. 1040 (2014) 772-777.
DOI: 10.4028/www.scientific.net/amr.1040.772
Google Scholar
[15]
V. Yu. Filimonov, M.A. Korchagin, E.V. Smirnov, A.A. Sytnikov, V.I. Yakovlev, N.Z. Lyakhov, Adiabatic thermal explosion in disperse condensed systems with limited solubility of the reactants in the product layer, Intermetallics. 19 (7) (2011).
DOI: 10.1016/j.intermet.2010.11.028
Google Scholar
[16]
L.I. Shevtsova, I.A. Bataev, V.I. Mali, A.G. Anisimov, D.V. Lazurenko, T.S. Sameyshcheva, Influence of heat temperature on the structure and mechanical properties of the material fabricated by spark plasma sintering of the PN85U15 powder, Obrabotka metallov (tekhnologiya, oborudovanie, instrumenty) (2013).
Google Scholar
[17]
Q. Fan, H. Chai, Z. Jin, Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of mononickel aluminide, Intermetallics. 9 (2001) 609–619.
DOI: 10.1016/s0966-9795(01)00046-2
Google Scholar
[18]
S.V. Kositsyn, I.I. Kositsyna, Phase and structural transformations in the monoaluminide nickel-based alloys, Russian Metal Physics. 9 (2008) 195-258 (in Russian).
DOI: 10.15407/ufm.09.02.195
Google Scholar