[1]
Gorynin I.V., Chechulin B.B. Titan v mashinostroenij. – M.: Mashinostroenie, 1990. – 399 C.
Google Scholar
[2]
Shuleshova T.G., Woodcock H. -G., et al. Metastable Phase Formation in Ti-Al-Nb Undercooled Melts / Acta Materialia. – 2007. – Vol. 55, №2. – P. 681-689.
DOI: 10.1016/j.actamat.2006.08.058
Google Scholar
[3]
Imaev R.M., Hismatullin T.G., Oering M., Appel' F. Novye podhody k razrabotke splavov na osnove faz γ-TiAl+α2-Ti3Al / Fizika metallov i metallovedenie. – 2006. – №1. – str. 114-122.
Google Scholar
[4]
Huang A., Hu D., Xinhua WuLoretto, M.H. The Influence of Interrupted Cooling on the Massive Transformation in Ti46Al8Nb / Intermetallics. – 2007. – Vol. 23, №5. – P. 1147-1155.
DOI: 10.1016/j.intermet.2007.02.002
Google Scholar
[5]
Bystrzanowski S., Bartels A., Stark A., Gerling R., Schimansky F. -P., Clemens H. Evolution of Microstructure and Texture in Ti-46Al-9Nb Sheet Material During Tensile Flow at Elevated Temperatures / Intermetallics. – 2010. – Vol. 18. – P. 1046-1055.
DOI: 10.1016/j.intermet.2010.01.036
Google Scholar
[6]
Raghavan V. Al – Nb – Ti (Aluminum – Niobium – Titanium) / Journal of Phase Equilibria and Diffusion. – 2010. – Vol. 31, №1. – P. 47-52.
DOI: 10.1007/s11669-009-9623-x
Google Scholar
[7]
Gorkin I.V. Issledovaniya i razrabotka FGUP CINK KM «{PROMETEI» v oblasti konstrukcionnyh nanomaterialov / Rossijskie nanotehnologij. – 2007. – №3-4. – str. 36-57.
Google Scholar
[8]
Witusiewicz V.T., Bondar A.A., Hecht U., Velikanova T. Ya. The Al-B-Nb-Ti System IV. Experimental Study and Thermodynamic Reevalution of the Binary Al-Nb and Al-Nb-Ti Systems / Jornal of Alloys and Compounds. – 2009. – Vol. 472, №1-2. – P. 133-161.
DOI: 10.1016/j.jallcom.2008.05.008
Google Scholar
[9]
Raghvan V. Al-Nb-Ti (Aluminum-Niobium-Titanium) / Journal of Phase Equilibria and Diffusion. – 2012. – Vol. 33, №2. – P. 143-144.
DOI: 10.1007/s11669-012-0013-4
Google Scholar
[10]
Tretyachenko L.O. Aluminium-Niobium-Titanium / Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology (New Series). Group IV: Physical Chemistry. –Ternary Alloy Systems. Phase Diagrams, Crystallographic and Thermodyamic Data Critically Evaluated by MSIT. - Berlin, Heidelberg: Springer-Verlag, 2005. – 11A3. – P. 334-379.
DOI: 10.1007/978-3-642-02700-0_9
Google Scholar
[11]
Kiparisov S.S., Libenson G.A. Poroshkovaya metallurgia. – M.: Metallurgiya, 1991. – 432 str.
Google Scholar
[12]
Itin V.I., Naiborodenko Yu.S. Vysokotemperaturnij sintez intermetallicheskih soedinenij. - Tomsk: Izd-vo Tomsk, un-tA, 1989. – 214 str.
Google Scholar
[13]
Tokita M. Development of Advanced Spark Plasma Sintering (SPS) Systems and its applications / Ceramic Transaction. – 2006. –Vol. 194. – P. 51-60.
Google Scholar
[14]
Boldin M. s. Fizicheskie osnovy tehnologij elektroimpul'snogo plazmennogo spekaniya: icheb. -metod. Posobie / Nizhegorod. gos. un-t. – Nizhnij Novgorod, 2012. – 59 str.
Google Scholar
[15]
Zhang F., Otterstein E., Burkel E. Spark Plasma Sintering, Microstructures and Mechanical Properties of Macroporous Titanium Foams / Advanced Engineering Materials. – 2010. – Vol. 12, №9. – P. 863-872.
DOI: 10.1002/adem.201000106
Google Scholar
[16]
Jabbar H., Monchoux J. -P., Houdelier F., Dolle M., Schimansky F. -P., Pyczak F., Thomas M., Couret A. Microstructure and Mechanical Properties of High Niobium Containing TiAl Alloys Elaborated by Spark Plasma Sintering / Intermetallics. 2010. – Vol. 18, №12. – P. 2312-2321.
DOI: 10.1016/j.intermet.2010.07.024
Google Scholar