Technology of Ti-Al-Nb Obtaining by Use of Spark Plasma Sintering Method

Article Preview

Abstract:

This method grants effective control of the porosity of the sintering materials and ability to obtain compactly packed samples, where simple pressing is not feasible. Spark plasma sintering is one of the probable methods that could lead to larger energy efficiency in material manufacturing. Upon use of SPS, there is no need to “pre-heat” the material by use of pressure or additional use of connecting agents or components. Manufacture of the components is being finished at the instant. Initial microstructure of the powder is being saved. Besides, with use of analyzing method, it is possible to obtain material of the new type, ones that are have resistance to heat. Use of SPS technology could imply lesser time of sintering for highly packed specimens. Decrease of time implies decrease of microstructural changes as a result of diffusion controlled phase changes. Taking into account what has been mentioned above, choosing the best suitable regime for Ti-Al-Nb proposes a variety of intermetallic junctions and could be used for creation of alloys with different physical-mechanical properties. This study concentrates on optimal regime of obtaining intermetallic junction based on Ti-Al-Nb with use of spark plasma sintering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-44

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Gorynin I.V., Chechulin B.B. Titan v mashinostroenij. – M.: Mashinostroenie, 1990. – 399 C.

Google Scholar

[2] Shuleshova T.G., Woodcock H. -G., et al. Metastable Phase Formation in Ti-Al-Nb Undercooled Melts / Acta Materialia. – 2007. – Vol. 55, №2. – P. 681-689.

DOI: 10.1016/j.actamat.2006.08.058

Google Scholar

[3] Imaev R.M., Hismatullin T.G., Oering M., Appel' F. Novye podhody k razrabotke splavov na osnove faz γ-TiAl+α2-Ti3Al / Fizika metallov i metallovedenie. – 2006. – №1. – str. 114-122.

Google Scholar

[4] Huang A., Hu D., Xinhua WuLoretto, M.H. The Influence of Interrupted Cooling on the Massive Transformation in Ti46Al8Nb / Intermetallics. – 2007. – Vol. 23, №5. – P. 1147-1155.

DOI: 10.1016/j.intermet.2007.02.002

Google Scholar

[5] Bystrzanowski S., Bartels A., Stark A., Gerling R., Schimansky F. -P., Clemens H. Evolution of Microstructure and Texture in Ti-46Al-9Nb Sheet Material During Tensile Flow at Elevated Temperatures / Intermetallics. – 2010. – Vol. 18. – P. 1046-1055.

DOI: 10.1016/j.intermet.2010.01.036

Google Scholar

[6] Raghavan V. Al – Nb – Ti (Aluminum – Niobium – Titanium) / Journal of Phase Equilibria and Diffusion. – 2010. – Vol. 31, №1. – P. 47-52.

DOI: 10.1007/s11669-009-9623-x

Google Scholar

[7] Gorkin I.V. Issledovaniya i razrabotka FGUP CINK KM «{PROMETEI» v oblasti konstrukcionnyh nanomaterialov / Rossijskie nanotehnologij. – 2007. – №3-4. – str. 36-57.

Google Scholar

[8] Witusiewicz V.T., Bondar A.A., Hecht U., Velikanova T. Ya. The Al-B-Nb-Ti System IV. Experimental Study and Thermodynamic Reevalution of the Binary Al-Nb and Al-Nb-Ti Systems / Jornal of Alloys and Compounds. – 2009. – Vol. 472, №1-2. – P. 133-161.

DOI: 10.1016/j.jallcom.2008.05.008

Google Scholar

[9] Raghvan V. Al-Nb-Ti (Aluminum-Niobium-Titanium) / Journal of Phase Equilibria and Diffusion. – 2012. – Vol. 33, №2. – P. 143-144.

DOI: 10.1007/s11669-012-0013-4

Google Scholar

[10] Tretyachenko L.O. Aluminium-Niobium-Titanium / Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology (New Series). Group IV: Physical Chemistry. –Ternary Alloy Systems. Phase Diagrams, Crystallographic and Thermodyamic Data Critically Evaluated by MSIT. - Berlin, Heidelberg: Springer-Verlag, 2005. – 11A3. – P. 334-379.

DOI: 10.1007/978-3-642-02700-0_9

Google Scholar

[11] Kiparisov S.S., Libenson G.A. Poroshkovaya metallurgia. – M.: Metallurgiya, 1991. – 432 str.

Google Scholar

[12] Itin V.I., Naiborodenko Yu.S. Vysokotemperaturnij sintez intermetallicheskih soedinenij. - Tomsk: Izd-vo Tomsk, un-tA, 1989. – 214 str.

Google Scholar

[13] Tokita M. Development of Advanced Spark Plasma Sintering (SPS) Systems and its applications / Ceramic Transaction. – 2006. –Vol. 194. – P. 51-60.

Google Scholar

[14] Boldin M. s. Fizicheskie osnovy tehnologij elektroimpul'snogo plazmennogo spekaniya: icheb. -metod. Posobie / Nizhegorod. gos. un-t. – Nizhnij Novgorod, 2012. – 59 str.

Google Scholar

[15] Zhang F., Otterstein E., Burkel E. Spark Plasma Sintering, Microstructures and Mechanical Properties of Macroporous Titanium Foams / Advanced Engineering Materials. – 2010. – Vol. 12, №9. – P. 863-872.

DOI: 10.1002/adem.201000106

Google Scholar

[16] Jabbar H., Monchoux J. -P., Houdelier F., Dolle M., Schimansky F. -P., Pyczak F., Thomas M., Couret A. Microstructure and Mechanical Properties of High Niobium Containing TiAl Alloys Elaborated by Spark Plasma Sintering / Intermetallics. 2010. – Vol. 18, №12. – P. 2312-2321.

DOI: 10.1016/j.intermet.2010.07.024

Google Scholar