[1]
S. Johnson, M. Proctor, E. Bluth, D. Smetherman, K. Baumgarten, L. Troxclair, M. Bienvenu, Evaluation of a hydrogen peroxide-based system for high-level disinfection of vaginal ultrasound probes, J. UltrasoundMed, 32 (2013), 1799-1804.
DOI: 10.7863/ultra.32.10.1799
Google Scholar
[2]
N. V. Klassen, D. Marchington, H.C.E. McGowan, H2O Determination by the I3– method and by KMnO4 titration, Anal. Chem., 66 (1994), 2921-2925.
DOI: 10.1021/ac00090a020
Google Scholar
[3]
B. Li, Z. Zhang, Y. Jin, Chemiluminescence flow biosensor for hydrogen peroxide with immobilized reagents, Sensors and Actuators B: Chemical., 72(2001), 115-119.
DOI: 10.1016/s0925-4005(00)00623-7
Google Scholar
[4]
J.P. Oliveira, A.R. Pradob, R.E. Volkersb, M.J. Pontesb, M.N. Ribeirob, B.V. Nogueira, M.C.C. Guimarães, Ultrasensitive nanosensor based on silver nanoparticles to detect hydrogen peroxide, Proc. of SPIE, 9286 (2016), 928641-1-928641-7.
Google Scholar
[5]
M. Somasundrum, K. Kirtikara, M. Tanticharoen, Amperometric determination of hydrogen peroxide by direct and catalytic reduction at a copper electrode, Anal. Chim. Acta, 319 (1996), 59-70.
DOI: 10.1016/0003-2670(95)00473-4
Google Scholar
[6]
S. Yang, Y. Zheng, X. Zhang, L. Li., W. Zha, Molecularly imprinted electrochemical sensor based on the synergic effect of nanoporous gold and copper nanoparticles for the determination of cysteine, J. of Solid State Electrochemistry, 20 (2016).
DOI: 10.1007/s10008-016-3213-8
Google Scholar
[7]
W. -Z. LE, You.Q., Hu. Q. Guang., Preparation of manganese modified glassy carbon electrode by a novel film plating cyclic voltammetry method for H2O2 detection, J. Chil. Chem. Soc., 54 (2009), 366-371.
DOI: 10.4067/s0717-97072009000400009
Google Scholar
[8]
Sh. Xu, Bo Peng, X. Han, A third-generation H2O2 biosensor based on horseradish peroxidase-labeled Au nanoparticles self-assembled to hollow porous polymeric nanopheres, Biosens. and Bioelectron. 22 (2007) 1807–1810.
DOI: 10.1016/j.bios.2006.07.008
Google Scholar
[9]
Zh. Miao, Di Zhang and Q. Chen, n thatNon-enzymatic hydrogen peroxide sensors based on multi-wall carbon nanotube/Ptnanoparticle nanohybrids, Materials, 7 (2014), 2945-2955.
DOI: 10.3390/ma7042945
Google Scholar
[10]
D.O. Perevezentseva, K.V. Skirdin, E.V. Gorchakov, V.I. Bimatov, Electrochemical activity of glutathione at a graphite electrode modified with gold nanoparticles, Orient. J. of Chem. 31 (2015), 834-844.
DOI: 10.13005/ojc/310226
Google Scholar
[11]
D.O. Perevezentseva, K.V. Skirdin, E.V. Gorchakov, V.I. Bimatov, Electrochemical activity of methionine at graphite electrode modified with gold nanoparticles Key Eng. Mat., 685 (2016), 563-568.
DOI: 10.4028/www.scientific.net/kem.685.563
Google Scholar
[12]
A.V. Mostovshchikov, A.P. Ilyin, N.S. Barabash, Influence of ultra-violet radiation on sublimation energy of silver chloride (AgCl), Key Eng. Mat., 685 (2016), 735-738.
DOI: 10.4028/www.scientific.net/kem.685.735
Google Scholar
[13]
N. Sandhyarani, M.R. Resmi, R. Unnikrishnan, K. Vidyasagar, S. Ma, M.P. Antony, G.P. Selvam, V. Visalakshi, N. Chandrakumar, K. Pandian, Y.T. Tao, T. Pradeep, Monolayer-protected cluster superlattices: structural, spectroscopic, calorimetric, and conductivity studies, Chem. of Mat. 12 (2000).
DOI: 10.1021/cm990429t
Google Scholar
[14]
A.V. Korshunov, M. Heyrovský, Dispersion of silver particles in aqueous solutions visualized by polarography/voltammetry, Electrochim. Acta. 54(2009) 6264-6268.
DOI: 10.1016/j.electacta.2009.05.084
Google Scholar
[15]
D. Perevezentseva , E. Gorchakov., M. Petrushin, I. Hismutdinov, V. Bimatov, Influence of silver nanoparticles conditions synthesis on their electrochemical properties, AIP Conference Proceedings, 1772 (2016), 020005-1-020005-5.
DOI: 10.1063/1.4964527
Google Scholar
[16]
D.O. Perevezentseva, E.V. Gorchakov, Yu.A. Oskina, Electrolytic behavior silver microphases and nanophases on the graphite electrode surface, Key Eng. Mat., 712 (2016), 117-122.
DOI: 10.4028/www.scientific.net/kem.712.117
Google Scholar