The Oxidative Destruction of Substandard Tributyl Phosphate Organic Solutions under Mild Conditions

Article Preview

Abstract:

The liquid-phase oxidative destruction of 30% solution of tributyl рhosphate in kerosene has been carried out under the action of oxidants generated by the electrical current which has been passed through 40% aqueous solutions of the sulfuric acid under atmospheric pressure and at temperature of 50 °C. Tributyl phosphate and its solvent have been partly destroyed due to the electrochemical processes on the lead electrodes, however, a large part of components has been subjected to deep oxidation in the volume of electrolyte. As a result of oxidation, the following final products have been formed: phosphoric acid, mono- and dicarboxylic acids, carbon dioxide and water.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

305-309

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Konnikov A. V. Ftororganicheskie razbaviteli TBF v processah yekstrakcionnogo izvlechenija aktinidov iz azotnokislyh rastvorov. Diss. …kand. teh. nauk / Predprijatie goskorporacii «Rosatom» federal'noe gosudarstvennoe unitarnoe predprijatie «Proizvodstvennoeob'edinenie «Majak». Ozersk, (2015).

Google Scholar

[2] Predisposal management of organic radioactive waste, Technical reports series № 427, Vienna International atomic energy agency, (2004).

Google Scholar

[3] V. Valdovinos, F. Monroy-Guzman, E. Bustos, , Environmental risk assessment of soil contaminat 14 (2014) 397.

Google Scholar

[4] S. V. S. Rao, S. S. Raj, K. B. Lal, Treatment methods for radioactive wastes and its electrochemical applications, Separation Science and Technology, 1996, 7, 1011.

Google Scholar

[5] David F. Steele, Method for the treatment of waste matter, Patent USA 4, 874, 485.

Google Scholar

[6] M. F. Mabrouk, J. M. Lemont, Baronnet. Incineration of radioactive organic liquid wastes by underwater thermal plasma, Journal of Physics: Conference Series 406 012002, (2012).

DOI: 10.1088/1742-6596/406/1/012002

Google Scholar

[7] T. S. Volkova, Utiilizacija otrabotannyh vakuumnyh masel, zagrjaznennyh radionuklidami, Dissertacija na soiskanie uchenoi stepeni kandidata himicheskih nauk (Ozersk FGUP PO «Majak» IFHYeim. A.N. Frumkina RAN), (2014).

Google Scholar

[8] Trupti D. Chaudhari, S. Eapen, M. H. Fulekar, Characterization of industrial waste and identification of potential micro-organism degrading tributyl phosphate, Journal of Toxicology and Environmental Health Sciences, 7 (2009) 1-7.

Google Scholar

[9] A. Bernardo, R. Frontana-Uribe, Daniel Little Jorge G Ibanez, A. Palmad, R. Vasquez-Medrano, Organic electrosynthesis: a promising green methodology in organic, Green Chemystry, 12 (2010), 12, 2099–2119.

DOI: 10.1039/c0gc00382d

Google Scholar

[10] M.N. Chong, A.K. Sharma, C.P. Saint, S. Burn, Advanced oxidation technologies for wastewater treatment and reuse, Wastewater treatment, 3 (2012) 1-4.

Google Scholar

[11] T. N. Volgina, V. T. Novikov, D. S. Vorobjyov, O. Y. Fedorova, Oxidative detoxification of organomercury pesticides, Procedia Chemistry, 15 (2015) 115-119.

DOI: 10.1016/j.proche.2015.10.018

Google Scholar

[12] T. N. Volgina, V. T. Novikov, O. Y. Fedorova, Liquid-Phase Oxidative Degradation of the Damaged or Expired Medicinal Products , Advanced Materials Research, 1040 (2014) 327-330.

DOI: 10.4028/www.scientific.net/amr.1040.327

Google Scholar

[13] A. Anglada, A. Urtiaga, I. Ortiz, Contributions of electrochemical oxidation to waste-water treatment: fundamentals and review of applications, J ChemTechnol Biotechnol, 84 (2009) 1747-1755.

DOI: 10.1002/jctb.2214

Google Scholar

[14] V. I. Astafurov, Opredelenieprimesidibutilfosfornoikisloty v tributilfosfate i yekstragentahna ego osnove, FӘN-Nauka, (2013).

Google Scholar