Polymer Membranes for Hydrogen Fuel Cells

Article Preview

Abstract:

The purpose of this study is to improve the kinetics of styrene monomer accumulation in polyvinylidene fluoride films with radiation-chemical grafting of styrene monomer. The work has proved that the degree of grafting depends on the absorbed dose of helium ions, temperature and composition of the grafting solution.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

297-302

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] European Commission, EUR 20719 EN, Hydrogen Energy and Fuel Cells. A vision of our future. Luxembourg: Office for Official Publications of the European Communities, ISBN 92-894-5589-6 (2003) 36.

Google Scholar

[2] M.A. Hickner, H. Ghassemi, Y.S. Kim, B.R. Einsla, J.E. McGrath, Alternative Polymer Systems for Proton Exchange Membranes (PEMs), Chem. Rev. 104 (2004) 4587-4612.

DOI: 10.1021/cr020711a

Google Scholar

[3] A.B. Yaroslavtsev, Ion transport in heterogeneous solid systems, Russ. J. Inorganic Chem. 45 (2000) S249-S267.

Google Scholar

[4] R.B. Carlin, N.E. Shakespeare, The Polymerization of p-Chlorostyrene in the Presence of Polymethylacrylate, J. Am. Chem. Soc. 68 (1946) 876-878.

DOI: 10.1021/ja01209a052

Google Scholar

[5] K.A. Mauritz, R.B. Moore, State of Understanding of Nafion, Chem. Rev. 104 (2004) 4535.

Google Scholar

[6] D. Galperin, P.G. Khalatur, A.R. Khokhlov , Device and Materials Modeling in PEM Fuel Cells, Topics in Applied Physics. 113 (2009) 453-483.

DOI: 10.1007/978-0-387-78691-9_17

Google Scholar

[7] St.J. Paddison, R. Paul, K.D. Kreuer, Theoretically computed proton diffusion coefficients in hydrated PEEKK membranes, Physical Chemistry Chemical Physics. 4 (2013) 1151-1157.

DOI: 10.1039/b109791a

Google Scholar

[8] S.J. Paddison, Proton conduction mechanisms at low degrees of hydratation in sulfonic acid–based polymer electrolyte membranes, Annu. Rev. Mater. Res. 33 (2003) 289-319.

DOI: 10.1146/annurev.matsci.33.022702.155102

Google Scholar

[9] M.M. Nasef, E. S. A. Hegazy, Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films, Prog. Polym. Sci. 29 (2004) 499-561.

DOI: 10.1016/j.progpolymsci.2004.01.003

Google Scholar

[10] J.A. Horsfall, K.V. Lovell, Synthesis and characterisation of sulfonic acid-containing ion exchange membranes based on hydrocarbon and fluorocarbon polymers, Europ. Polym.J. 38 (2002) 1671-1682.

DOI: 10.1016/s0014-3057(02)00031-9

Google Scholar

[11] S.A. Gursel, L. Gubler, B. Gupta, G.G. Scherer, Radiation Grafted Membranes, Adv. Polym. Sci. 215 (2008) 157-217.

Google Scholar

[12] J.C. Yang, V.J. Jablonsky, J.W. Mays, NMR and FT-IR studies of sulfonated styrene-based homopolymers and copolymers, Polymer. 43 (2002) 5125-5132.

DOI: 10.1016/s0032-3861(02)00390-7

Google Scholar

[13] S. Dubibsky, G.S. Grader, G.E. Shter, M.S. Silverstein, Thermal degradation of poly(acrylic acid) containing copper nitrate, Polym. Degrad. Stab. 86 (2004) 171-178.

DOI: 10.1016/j.polymdegradstab.2004.04.009

Google Scholar

[14] V. V. Sokhoreva, N. A. Dubrova, A. A. Dyussembekova, Radiation-Chemical Modification of PVDF Films as a Method of Creating Proton-Conducting Membranes, Key Eng. Mater. 683 (2016) 193-198.

DOI: 10.4028/www.scientific.net/kem.683.193

Google Scholar

[15] A.A. Dyussembekova, Radio-chemical of fluorine-containing polymer TEFLON-2M, for giving proton conducting properties, Resource efficient technologies - energy and enthusiasm of youth, Proceedings of the VI All-Russian Conference, Tomsk, 2015, pp.540-545.

Google Scholar