The Effect of Heat Treatment on the Shape Memory Effect and Superelasticity in NiMnGa Single Crystals

Article Preview

Abstract:

It was shown in Ni53Mn25Ga22 single crystals that the annealing at 1273 K for 1 h followed by slow cooling, at which the (L21+γ)-structure is formed, provides the increase of crystals plasticity as compared with the brittle initial L21-single crystals. The increase of critical stresses by more than 2 times (up to σ > 150 MPa), at which the cooling/heating cycles under stress are accompanied by sample destruction, is observed. Moreover, the value of thermal hysteresis is increased by 1.5 times and the perfect curve of superelasticity is observed at T=423 K.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

91-94

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Xu, J. Wang, C. Jiang, Y. Li, Ni–Mn–Ga shape memory alloys development in China / Current Opinion in Solid State and Materials Science. 9 (2005) 319–325.

DOI: 10.1016/j.cossms.2006.02.010

Google Scholar

[2] H.E. Karaca, I. Karaman, B. Basaran, D.C. Lagoudas, Y.I. Chumlyakov, H.J. Maier, On the stress-assisted magnetic-field-induced phase transformation in Ni2MnGa ferromagnetic shape memory alloys / Acta Materialia. 55 (2007) 4253–4269.

DOI: 10.1016/j.actamat.2007.03.025

Google Scholar

[3] J. Wang, Ch. Jiang, Single-crystal growth of NiMnGa magnetic shape memory alloys, Journal of Crystal Growth. 310 (2008) 865-869.

DOI: 10.1016/j.jcrysgro.2007.11.197

Google Scholar

[4] J. Mohd Jani, M. Leary, A. Subic, M. A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials and Design. 56 (2014) 1078–1113.

DOI: 10.1016/j.matdes.2013.11.084

Google Scholar

[5] Y. Xin,Y. Li, Z. Liu, Thermal stability of dual-phase Ni58Mn25Ga17 high-temperature shape memory alloy / Scripta Materialia. 63 (2010) 35–38.

DOI: 10.1016/j.scriptamat.2010.02.044

Google Scholar

[6] R. Santamarta, E. Cesari, J. Muntasell, J. Font, J. Pons, P. Ochin, Thermal and microstructural evolution under ageing of several high-temperature Ni–Mn–Ga alloys, Intermetallics. 18 (2010) 977–983.

DOI: 10.1016/j.intermet.2010.01.016

Google Scholar

[7] X. Moya, L. Manosa, A. Planes, T. Krenke, M. Acet, E.F. Wassermann, Martensitic transition and magnetic properties in Ni–Mn–X alloys / Materials Science and Engineering A. 438–440 (2006) 911–915.

DOI: 10.1016/j.msea.2006.02.053

Google Scholar

[8] K. Tsuchiya, A. Tsutsumi, H. Nakayama, S. Ishida, H. Ohtsuka, M. Umemoto, Displacive phase transformations and magnetic properties in Ni-Mn-Ga ferromagnetic shape memory alloys, J. Phys. IV France. 112 (2003) 907-910.

DOI: 10.1051/jp4:20031028

Google Scholar

[9] E. Y. Panchenko, Y.I. Chumlyakov, E. E. Timofeeva, N. G. Vetoshkina, H. Maier, Cyclic stability of superelasticity in the aged.

Google Scholar

[23] oriented Ni49Fe18Ga27Co6 single crystals, Russian Physics Journal. 55 (2013) 1046-1051.

Google Scholar