A New Pull-Out Test to Study the Bond Behavior of Fiber Reinforced Cementitious Composites

Article Preview

Abstract:

Fiber reinforced cementitious matrix (FRCM) composites are gaining increasing popularity in the civil engineering community. FRCM composites are comprised of high-strength fiber textiles embedded within inorganic matrices that are responsible for the stress-transfer mechanism between the composite and the substrate. Failure of FRCM composites including one layer of textile is generally reported to be debonding of the fibers from the embedding matrix. Therefore, the bond behavior of the matrix-fiber interface is of critical importance for these types of composites.This paper presents the results of an experimental campaign carried out to investigate the bond behavior of an FRCM composite comprising PBO fibers. Specimens were tested using a newly-developed pull-out test set-up. The results obtained are compared with those obtained by different authors on single-lap direct-shear tests with the same FRCM composite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

258-265

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Hashemi, R. Al-Mahaidi, Experimental and finite element analysis of flexural behavior of FRP-strengthened RC beams using cement-based adhesives, Constr. Build. Mater. 26 (2012), 268-273.

DOI: 10.1016/j.conbuildmat.2011.06.021

Google Scholar

[2] C. Pellegrino, T. D'Antino, Experimental behaviour of existing precast prestressed reinforced concrete elements strengthened with cementitious composites, Compos Part B. 55 (2013), 31-40.

DOI: 10.1016/j.compositesb.2013.05.053

Google Scholar

[3] L. Ombres, Structural performances of reinforced concrete beams strengthened in shear with a cement based fiber composite material, Compos Struct 122 (2015), 316-329.

DOI: 10.1016/j.compstruct.2014.11.059

Google Scholar

[4] Z.C. Tetta, Bournas D. B, TRM vs. FRP jacketing in shear strengthening of concrete members subjected to high temperatures Compos Part B 106 (2016), 190-205.

DOI: 10.1016/j.compositesb.2016.09.026

Google Scholar

[5] L. Ombres, S. Verre, Structural behavior of fabric reinforced cementitious matrix (FRCM) strengthened concrete columns under eccentric loading, Compos Part B 75 (2015), 235-249.

DOI: 10.1016/j.compositesb.2015.01.042

Google Scholar

[6] C. G. Papanicolaou, T.C. Triantafillou, K. Karlos, M. Papathanasiou, Textile reinforced mortar (TRM) versus FRP as strengthening material of URM walls: in-plane cyclic loading, Mater Struct 40 (2007), 1081-1097.

DOI: 10.1617/s11527-006-9207-8

Google Scholar

[7] G. De Felice, S. De Santis, L. Garmendia, B. Ghiassi, P. Larrinaga, P. B. Lourenco, D.V. Oliveira, F. Paolacci, C. G. Papanicolaou, Mortar-based systems for externally bonded strengthening of masonry, Mater and Struct 47 (2014), 2021-(2037).

DOI: 10.1617/s11527-014-0360-1

Google Scholar

[8] L. A. Bisby, T. J. Stratford, E. C. Roy, M. Ward. Fibre reinforced cementitious matrix systems for fire-safe flexural strengthening of concrete: pilot testing at ambient temperatures. In Proc of Advanced Composites in Construction Conference (ACIC), NetComposites Ltd 2009: 449-460.

Google Scholar

[9] A. D'Ambrisi, F. Focacci, R. Luciano, V. Alecci, M. De Stefano. Carbon-FRCM materials for structural upgrade of masonry arch road bridges. Compos Part B 75 (2015), 355-366.

DOI: 10.1016/j.compositesb.2015.01.024

Google Scholar

[10] AC434. Acceptance criteria for masonry and concrete strengthening using fiber-reinforced cementitious matrix (FRCM) composite systems. ICC-Evaluation Service, Whittier, CA; (2013).

DOI: 10.14359/51702356

Google Scholar

[11] AC549. 4R-13. Guide to design and construction of externally bonded fabric reinforcement cementitious matrix (FRCM) systems for repair and strengthening concrete and masonry structures. American Concrete Institute, Farmington Hills, MI; (2013).

DOI: 10.1016/j.prostr.2018.11.027

Google Scholar

[12] F. G. Carozzi, C. Poggi, Mechanical properties and debonding strength of fabric reinforced cementitious matrix (FRCM) systems for masonry strengthening, Compos Part B 70 (2015), ; 215-230.

DOI: 10.1016/j.compositesb.2014.10.056

Google Scholar

[13] T. D'Antino, C. G. Papanicolaou, Mechanical characterization of textile reinforced inorganic-matrix composites, Compos Part B, In Press. 10. 1016/j. compositesb. 2017. 02. 034.

Google Scholar

[14] Contamine R, Si Larbi A, Hamelin P. Contribution to direct tensile testing of textile reinforced concrete (TRC) composites. Mater Sci and Eng A 528 (2011), 8589-8598.

DOI: 10.1016/j.msea.2011.08.009

Google Scholar

[15] A. D'Ambrisi, L. Feo, F. Focacci, Bond-slip Relations for PBO-FRCM Materials Externally Bonded to Concrete, Compos: Part B. 43: 8 (2012), 2938-2949.

DOI: 10.1016/j.compositesb.2012.06.002

Google Scholar

[16] C. Carloni, L.H. Sneed, T. D'Antino, Interfacial bond characteristics of fiber reinforced cementitious matrix for external strengthening of reinforced concrete members, FraMCoS-8, 2013, J.G.M. Van Mier, G. Ruiz, C. Andrade, R.C. Yu and X.X. Zhang (Eds).

Google Scholar

[17] F. G. Carozzi, P. Colombi, G. Fava, C. Poggi, A cohesive interface crack model for the matrix–textile debonding in FRCM composites, Comp Struct 143 (2016), 230-241.

DOI: 10.1016/j.compstruct.2016.02.019

Google Scholar

[18] L. Ascione, G. de Felice, S. De Santis, A qualification method for externally bonded fibre reinforced cementitious matrix (FRCM) strengthening systems, Compos Part B (78) 2015, 497-506.

DOI: 10.1016/j.compositesb.2015.03.079

Google Scholar

[19] T. D'Antino, C. Carloni, L. H. Sneed, C. Pellegrino, Matrix-fiber Bond Behavior in PBO FRCM Composites: A Fracture Mechanics Approach, Eng Frac Mech 117 (2014), 94-111.

DOI: 10.1016/j.engfracmech.2014.01.011

Google Scholar

[20] T. D'Antino, L. H. Sneed, C. Carloni, C. Pellegrino, Effect of the inherent eccentricity in single-lap direct-shear tests of PBO FRCM-concrete joints, Comp Struct 142 (2016), 117-129.

DOI: 10.1016/j.compstruct.2016.01.076

Google Scholar

[21] L. H. Sneed, T. D'Antino, C. Carloni, C. Pellegrino, A comparison of the bond behavior of PBO-FRCM composites determined by double-lap and single-lap shear tests, Cement and Concr Comp 64 (2015), 37-48.

DOI: 10.1016/j.cemconcomp.2015.07.007

Google Scholar

[22] F. Focacci, T. D'Antino, C. Carloni, L.H. Sneed, C. Pellegrino, An indirect method to calibrate the interfacial cohesive material law for FRCM-concrete joints, submitted to Materials and design.

DOI: 10.1016/j.matdes.2017.04.038

Google Scholar

[23] T. D'Antino, L. H. Sneed, C. Carloni, C. Pellegrino, Bond behavior of the FRCM-concrete interface. In Proc XI int symp on Fiber Reinforced Polymers for reinf Concr Struct (FRPRCS11), Barros J, Sena-Cruz J Eds, (2013).

Google Scholar

[24] UNI EN 1015-11, Methods of test for mortar for masonry – Part 11: determination of flexural and compressive strength of hardened mortar, Brussels, Belgium: Comité Européen de Normalisation, (2007).

DOI: 10.3403/01905442

Google Scholar

[25] C. Carloni, S. Verre, L. H. Sneed, L. Ombres, Loading rate effect on the debonding phenomenon in fiber reinforced cementitious matrix-concrete joints, Compos Part B 108 (2017), 301-314.

DOI: 10.1016/j.compositesb.2016.09.087

Google Scholar

[26] Sikadur®-30, Product Data Sheet, Edition 10/12/(2014).

Google Scholar

[27] L. H. Sneed, T. D'Antino, C. Carloni, C. Pellegrino, A comparison of the bond behavior of PBO-FRCM composites determined by double-lap and single-lap shear tests, Cement and Concr Comp 64 (2015), 37-48.

DOI: 10.1016/j.cemconcomp.2015.07.007

Google Scholar