An Investigation of the Debonding Mechanism between FRCM Composites and a Masonry Substrate

Article Preview

Abstract:

Fiber reinforced cementitious matrix (FRCM) composites have recently become a hot topic in Europe as an alternative to traditional fiber reinforced polymer (FRP) composites for several strengthening applications of existing masonry buildings. The terrific success of this new retrofitting system is mainly due to some advantages that it offers when compared to FRP, such as the possibility of application of the composite to wet surfaces and the vapor permeability featured by the inorganic matrix. In this work, the stress transfer between FRCM composites and a masonry substrate is investigated. FRCM strips comprised of ultra-high-strength steel fibers embedded in a cementitious grout are externally bonded to masonry blocks. Single-lap direct shear tests are performed. Parameters studied are bonded length and density of the steel fibers. Load responses are presented and failure modes are discussed. Change in the bond behavior and load carrying capacity with increasing bonded length is analyzed to determine the effective bond length.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

382-389

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Carloni C., Focacci F., FRP-Masonry Interfacial Debonding: An Energy Balance Approach to Determine the Influence of the Mortar Joints. European Journal of Mechanics A/Solids, 55, (2016), 122–133.

DOI: 10.1016/j.euromechsol.2015.08.003

Google Scholar

[2] Focacci F., Carloni C., Periodic variation of the transferable load at the FRP-masonry interface. Composite Structures, 129, (2015), 90-100.

DOI: 10.1016/j.compstruct.2015.03.008

Google Scholar

[3] Carloni C., Subramaniam K.V., FRP-Masonry Debonding: Numerical and Experimental Study of the Role of Mortar Joints. ASCE Journal of Composites for Construction, 16(5), (2012), 581-589.

DOI: 10.1061/(asce)cc.1943-5614.0000282

Google Scholar

[4] A. D'Ambrisi, F. Focacci. Flexural strengthening of RC beams with cement-based composites, J Comp Constr 15: 5 (2011) 707-720.

DOI: 10.1061/(asce)cc.1943-5614.0000218

Google Scholar

[5] Loreto, L. Leardini, D. Arboleda, A. Nanni. Performance of RC slab-type elements strengthened with fabric reinforced cementitious matrix composites. J Compos Constr 18: 3 (2013) 1–9.

DOI: 10.1061/(asce)cc.1943-5614.0000415

Google Scholar

[6] C. Pellegrino, T. D'Antino. Experimental behavior of existing precast prestressed reinforced concrete elements strengthened with cementitious composites. Compos - Part B: Eng. 55 (2013)31-40.

DOI: 10.1016/j.compositesb.2013.05.053

Google Scholar

[7] L.H. Sneed, S. Verre, C. Carloni, C., L. Ombres. Flexural behavior of RC beams strengthened with steel-FRCM composite. Eng Struct 127 (2016) 686-699.

DOI: 10.1016/j.engstruct.2016.09.006

Google Scholar

[8] M.Y. Alabdulhadya, L.H. Sneed, C. Carloni. Torsional behavior of RC beams strengthened with PBO-FRCM composite – an experimental study. Eng Struc 136 (2017) 393–405.

DOI: 10.1016/j.engstruct.2017.01.044

Google Scholar

[9] A. D'Ambrisi, L. Feo, F. Focacci, Experimental analysis on bond between PBO-FRCM strengthening materials and concrete, Compos - Part B: Eng. 44: 1 (2013) 524–32.

DOI: 10.1016/j.compositesb.2012.03.011

Google Scholar

[10] T. D'Antino, C. Carloni, L.H. Sneed, C. Pellegrino. Matrix-fiber bond behavior in PBO FRCM composites – a fracture mechanics approach. Eng Frac Mech J 117 (2014) 94-111.

DOI: 10.1016/j.engfracmech.2014.01.011

Google Scholar

[11] L.H. Sneed, T. D'Antino, C. Carloni. Investigation of bond behavior of PBO fiber-reinforced cementitious matrix-composite concrete interface. ACI Mat J 111: 5 (2014) 569-580.

DOI: 10.14359/51686604

Google Scholar

[12] C. Carloni, T. D'Antino, L.H. Sneed, C. Pellegrino. Role of the matrix layers in the stress-transfer mechanism of FRCM composites bonded to a concrete substrate. ASCE J of Eng Mech 141: 6 (2015).

DOI: 10.1061/(asce)em.1943-7889.0000883

Google Scholar

[13] L.H. Sneed, T. D'Antino, C. Carloni, C. Pellegrino. A comparison of the bond behavior of PBO-FRCM composites determined by single-lap and double-lap shear tests. Cem and Conc Compos 64 (2015) 37-48.

DOI: 10.1016/j.cemconcomp.2015.07.007

Google Scholar

[14] C. Carloni, S. Verre, L.H. Sneed, L. Ombres. Loading rate effect on the debonding phenomenon in fiber reinforced cementitious matrix-concrete joints. Compos - Part B: Eng 108 (2017) 301–314.

DOI: 10.1016/j.compositesb.2016.09.087

Google Scholar

[15] G. De Felice, S. De Santis, L. Garmendia, B. Ghiassi, P. Larrinaga, P.B. Lourenco, D.V. Oliveira, F. Paolacci, C.G. Papanicolaou. Mortar-based systems for externally bonded strengthening of masonry. Mater Struct 47 (2014) 2021-(2037).

DOI: 10.1617/s11527-014-0360-1

Google Scholar

[16] G. Carozzi, C. Poggi, Mechanical properties and debonding strength of fabric reinforced cementitious matrix (FRCM) systems for masonry strengthening, Compos - Part B: Eng. 70 (2015) 215-230.

DOI: 10.1016/j.compositesb.2014.10.056

Google Scholar

[17] M.R. Valluzzi, F. Daporto, E. Garbin, M. Panizza. Out-of-plane behavior of infill masonry panels strengthened with composite materials. Mater Struct 47 (2014) 2131-2145.

DOI: 10.1617/s11527-014-0384-6

Google Scholar

[18] S. Babaeidarabad, F. De Caso, A. Nanni. URM walls strengthened with fabric-reinforced cementitious matrix composite subjected to diagonal compression. J Compos Constr 18: 2 (2013).

DOI: 10.1061/(asce)cc.1943-5614.0000441

Google Scholar

[19] V. Alecci, F. Focacci, L. Rovero, G. Stipo, M. De Stefano. Extrados strengthening of brick masonry arches with PBO-FRCM composites: experimental and analytical investigations. Compos Struct 149: 1 (2016) 184-196.

DOI: 10.1016/j.compstruct.2016.04.030

Google Scholar

[20] V. Giamundo, G.P. Lignola, G. Maddaloni, A. Balsamo, A. Prota, G. Manfredi. Experimental investigation of the seismic performances of IMG reinforcement on curved masonry elements. Compos - Part B: Eng 70 (2015) 53-63.

DOI: 10.1016/j.compositesb.2014.10.039

Google Scholar

[21] A. Bellini, A. Incerti, C. Mazzotti, Out-of-plane behavior of masonry walls strengthened by FRCM composites, 10th Int. Conf. on Structural Analysis of Historical Constructions, SAHC 2016; Leuven; Belgium; 13 September (2016).

DOI: 10.1201/9781315616995-142

Google Scholar

[22] CEN, EN 772-1, 2011. Methods of test for masonry units – Part 1: Determination of compressive strength. A1: 2015. Brussels: CEN.

Google Scholar

[23] Henzel J., Karl S., 1987, Determination of strength of mortar in the joints of masonry by compression tests on small specimens, «Darmstadt Concrete», 2, 123-136.

Google Scholar

[24] Kerakoll S. p.A. – web site: <www. kerakoll. com> [accessed Feb 2017].

Google Scholar

[25] CEN, EN 1015-11: 1999. Methods of test for mortar for masonry – Part 11: Determination of flexural and compressive strength of hardened mortar. A1: 2006. Brussels: CEN.

DOI: 10.3403/01905442

Google Scholar