Preparation of Nanosized Ni2+-Doped ErFeO3 by Microwave Assisted Process and its Visible-Light Photocatalytic Activity

Article Preview

Abstract:

Using Er (NO3)3·6H2O, Fe (NO3)3·9H2O, Ni (NO3)3·6H2O as main raw materials, the nanosized Ni2+-doped ErFeO3 was prepared by microwave assisted method. The Ni2+-doped ErFeO3 samples were characterized by thermogravimetry and differential thermal analysis (TG-DTA), powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-visible diffuse reflectance spectroscopy (DRS). The different doping amount was studied for photocatalytic properties of samples. The results show that the Ni2+-doped ErFeO3 is perovskite structure (ABO3), and its average grain size is nearly 80nm. Under the visible-light, using the methyl-orange as simulate sewages, the Ni2+-doped ErFeO3 has higher photocatalytic activity than pure ErFeO3 powder, and the doping amount of 0.02 to ErFeO3 is the best. When the illumination time of the visible light is 120 min, the degradation rate of the best ratio of the samples can rise to nearly 100% for the decomposition of methyl orange. Therefore, the nanosized Ni2+-doped ErFeO3 is an excellent visible-light photocatalyst.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

418-422

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Zhang, J. Yang, J. Xu, Q. Gao, Z Hong, Controllable synthesis of hexagonal and orthorhombic YFeO3 and their visible-light photocatalytic activities, Mater. Lett. 81(2012) 1–4.

DOI: 10.1016/j.matlet.2012.04.080

Google Scholar

[2] D. J. Ni, Q. Yang, J. X. Li, J. N. Ying, P. S. Tang, Preparation of Ni-Doped CeFeO3 by Microwave Process and Its Visible-Light Photocatalytic Activity, J. Nanosci Nanotechno. 16(2016) 1046-1049.

DOI: 10.1166/jnn.2016.10798

Google Scholar

[3] V. Polshettiwar, R. Luque, A. Fihri, H. B. Zhu, M. Bouhrara, J. Basset, Magnetically recoverable nanocatalysts, Chem. Rev. 111(2011) 3036-3075.

DOI: 10.1021/cr100230z

Google Scholar

[4] P. S. Tang, H. F. Chen, F. Cao, P. G. Xiang, Magnetically recoverable and visible light driven nanocrystalline YFeO3 photocatalysts. Catal, Sci. Technol. 1(2011) 1145-1148.

DOI: 10.1039/c1cy00199j

Google Scholar

[5] L. X. Jia, J. Y. Zhu, T. T. Lin, Z. Jiang, C. W. Tang, P. S. Tang, H. F. Chen, Preparation YbFeO3 by Microwave Assisted Method and its Visible-Light Photocatalytic Activity, Adv. Mater. Res. 699(2013) 708-711.

DOI: 10.4028/www.scientific.net/amr.699.708

Google Scholar

[6] J. L. Ding, X. M. Lü, H. M. Shu, J. M. Xie, Microwave-assisted synthesis of perovskite ReFeO3 (Re: La, Sm, Eu, Gd) photocatalyst, Mater. Sci. Eng., B. 171(2010) 31-34.

DOI: 10.1016/j.mseb.2010.03.050

Google Scholar

[7] J. Ameta, A. Kumar, R. Ameta, VK. Sharma, SC Ameta, Synthesis and characterization of CeFeO3 photocatalyst used in photocatalytic bleaching of gentian violet, J. Iran. Chem. Soc. 6(2009) 293-299.

DOI: 10.1007/bf03245837

Google Scholar

[8] B. Bashir, M. F. Warsi, M. A. Khan, M. N. Akhtar, Z. A. Gilani, I. Shakir. A. Wadood, Rare earth Tb3+ doped LaFeO3 nanoparticles: New materials for high frequency devices fabrication, Ceram. Int. 41(2015) 9199-9202.

DOI: 10.1016/j.ceramint.2015.03.235

Google Scholar

[9] S. M. Bukhari, J. B. Giorgi, Electrical conductivity dependence of Ni doped Sm0. 95Ce0. 05FeO3−δ, on surface morphology and composition,. Sens. Actuators, B Chem. 155 (2011) 524-537.

DOI: 10.1016/j.snb.2010.12.057

Google Scholar

[10] G. Deng, P. Guo, W. Ren, S. X. Cao, The magnetic structures and transitions of a potential multiferroic orthoferrite ErFeO3, J. Appl. Phys. 117(2015) 197-205.

Google Scholar

[11] C. W. Tang, J. N. Ying, D. J. Ni, Q. Yang, W. L. Mei, P. T. Song, Preparation of Nanoparticulate ErFeO3 by Microwave Assisted Process and its Photocatalytic Activity, Mater. Sci. Forum. 809(2015) 140-143.

DOI: 10.4028/www.scientific.net/msf.809-810.140

Google Scholar