[1]
T.M. Gur, Comprehensive review of methane conversion in solid oxide fuel cells: prospects for efficient electricity generation from natural gas, Progress in Energy and Combustion Science. 54 (2016) 1.
DOI: 10.1016/j.pecs.2015.10.004
Google Scholar
[2]
M.L. Faro, S. Trocino, S.C. Zignani, et al., Study of a solid oxide fuel cell fed with n-dodecane reformates. Part I: endurance test, International Journal of Hydrogen Energy. 41 (2016) 5741.
DOI: 10.1016/j.ijhydene.2016.02.119
Google Scholar
[3]
S.Y. Gomez, D. Hotza, Current developments in reversible solid fuel oxide, Renewable and Sustainable Energy Reviews. 61 (2016) 155.
DOI: 10.1016/j.rser.2016.03.005
Google Scholar
[4]
G. Pantaleo, L.V. Parola, F. Deganello, et al., Ni/CeO2 catalysts for methane partial oxidation synthesis driven structural and catalytic effects, Applied Catalysis B: Environmental. 189(2016) 233.
DOI: 10.1016/j.apcatb.2016.02.064
Google Scholar
[5]
L.L. Guan, S. Le, X.D. Zhu, et al., Densification behavior and space charge blocking effect of Bi2O3 and Gd2O3 co-doped CeO2 as electrolyte for solid oxide fuel cells, Electrochimica Acta. 161 (2016) 129.
DOI: 10.1016/j.electacta.2015.02.090
Google Scholar
[6]
H.P. Dasari, K. Ahn, S.Y. Park, et al., Record-low sintering-temperature (600℃) of solid-oxide fuel cell electrolyte, Journal of Alloys and Compounds. 672 (2016) 397.
DOI: 10.1016/j.jallcom.2016.02.184
Google Scholar
[7]
M.L. Li, C.Y. Xiong, Q. Zhang, et al., Composition optimization of samarium strontium manganite- yttria stabilized zirconia cathode for high performance intermediate temperature solid oxide fuel cells, Electrochimica Acta. 190 (2016) 531.
DOI: 10.1016/j.electacta.2016.01.035
Google Scholar
[8]
T. Somekawa, Y. Matsuzaki, Y. Tachikawa, et al., Study of the solid-state reaction at the interface between lanthanoid-doped ceria and yttria-stabilized zirconia for solid-oxide fuel cell application, Solid State Ionics. 282 (2015) 1.
DOI: 10.1016/j.ssi.2015.09.005
Google Scholar
[9]
S.Y. Gomez, D. Hotza, Current developments in reversible solid oxide fuel cells, Renewable and Sustainable Energy Reviews. 61 (2016) 155.
DOI: 10.1016/j.rser.2016.03.005
Google Scholar
[10]
N. Ai, Z. Lv, K. Chen, et al., Preparation of Sm0. 2Ce0. 8O1. 9 membranes on porous substrates by a slurry spin coating method and its application in IT-SOFC, Journal of Membrane Science Vol. 286 (2006) 255.
DOI: 10.1016/j.memsci.2006.10.003
Google Scholar
[11]
B. Matovic, M. Stojmenovic, J. Pantic, et al., Electrical and micro-structural properties of Yb- doped CeO2, Journal of Asian Ceramic Societies. 2 (2014) 117.
Google Scholar
[12]
P. Peng, C. Xia, X. Liu, et al., Intermediate-temperature SOFCs with thin Ce0. 8Y0. 2O1. 9 films prepared by screen-printing, Solid State Ionics. 152/153 (2002) 561.
DOI: 10.1016/s0167-2738(02)00365-x
Google Scholar
[13]
X.Z. Liu, L.T. Xia, J. Chen, C.N. 201510503095. 3. (2015).
Google Scholar
[14]
C.H. Wang, C. H. Lu, Synthesis of cerium hydroxycarbonate powders via a hydrothermal technique, Mater Res Bull. 37 (2002) 783.
DOI: 10.1016/s0025-5408(01)00766-8
Google Scholar