Effects of C and NbC Additions on the Microstructure and Mechanical Properties of Binderless WC Ceramics

Article Preview

Abstract:

Powder mixtures of WC–(0–2 mol%) NbC and WC–1.5 mol% NbC–(0–5 mol%) C were sintered at 1800°C using a resistance-heated hot-pressing machine; dense WC–NbC and WC–1.5 mol% NbC–C ceramics were obtained. The relative X-ray diffraction (XRD) peak intensity of W2Css decreased with increasing C amount and disappeared at 5 mol% C. Small amounts of C remained after sintering at 5 mol% C. The WC–1.5 mol% NbC ceramics with 0–3 mol% of added C were composed of equiaxed small granular grains. Large WC grains formed in WC–1.5 mol% NbC ceramics above 4 mol% C. The hardness of WC–NbC ceramics decreased from 25.7 GPa for WC to 23.6 GPa for 2 mol% NbC obtained by NbC addition. The hardness change for WC–1.5 mol% NbC ceramics with up to 3 mol% of added C was small, around 24 GPa. The Vickers hardness of WC–1.5 mol% NbC ceramics above 4 mol% C decreased markedly from 23 to 13 GPa with increasing added C, due to extensive WC grain growth.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

205-210

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Nino, A. Tanaka, S. Sugiyama, H. Taimatsu, Indentation size effect for the hardness of refractory carbides, Mater. Trans. 51 (2010) 1621-1626.

DOI: 10.2320/matertrans.m2010110

Google Scholar

[2] A. Nino, K. Takahashi, S. Sugiyama, H. Taimatsu, Effects of carbon addition on microstructures and mechanical properties of binderless tungsten carbide, Mater. Trans. 53 (2012) 1475-1480.

DOI: 10.2320/matertrans.m2012148

Google Scholar

[3] J. Zhao, T. Holland, Unuvar C, Z. A. Munir, Sparking plasma sintering of nanometric tungsten carbide, Int. J. Refract. Met. Hard Mater. 27 (2009) 130-139.

DOI: 10.1016/j.ijrmhm.2008.06.004

Google Scholar

[4] S. G. Huang, K. Vanmeensel, O. Van der Biest, J. Vleugels, Binderless WC and WC–VC materials obtained by pulsed electric current sintering, Int. J. Refract. Met. Hard Mater. 26 (2008) 41-47.

DOI: 10.1016/j.ijrmhm.2007.01.002

Google Scholar

[5] H. C. Kim, J. K. Yoon, J. M. Doh, I. Y. Ko, I. J. Shon, Rapid sintering process and mechanical properties of binderless ultra fine tungsten carbide, Mat. Sci. Eng. A 435-436 (2006) 717-724.

DOI: 10.1016/j.msea.2006.07.127

Google Scholar

[6] H. C. Lee, J. Gurland, Hardness and deformation of cemented tungsten carbide, Mat. Sci. Eng. 33 (1978) 125-133.

DOI: 10.1016/0025-5416(78)90163-5

Google Scholar

[7] K. Hayashi, Y. Fukue, H. Suzuki, Effects of addition carbides on the grain size of WC–Co alloy, J. Jpn. Soc. Powder Powder Metall. 19 (1972) 67-71.

DOI: 10.2497/jjspm.19.67

Google Scholar

[8] H. Taimatsu, S. Sugiyama, M. Komatsu, Effects of Cr3C2 and V8C7 on the microstructure and mechanical properties of WC-SiC whisker ceramics, Mater. Trans. 50 (2009) 2435-2440.

DOI: 10.2320/matertrans.m2009169

Google Scholar

[9] S. Imasato, K. Tokumoto, T. Kitada, S. Sakaguchi, Properties of ultra-fine grain binderless cemented carbide RCCFN, Int. J. Refract. Met. Hard Mater. 13 (1995) 305-312.

DOI: 10.1016/0263-4368(95)92676-b

Google Scholar

[10] J. Poetschke, V. Richter, R. Holke, Influence and effectivity of VC and Cr3C2 grain growth inhibitors on sintering of binderless tungsten carbide, Int. J. Refract. Met. Hard Mater. 31 (2012) 218-223.

DOI: 10.1016/j.ijrmhm.2011.11.006

Google Scholar

[11] H. Taimatsu, S. Sugiyama, Y. Kodaira, Synthesis of W2C by reactive hot pressing and its mechanical properties, Mater. Trans. 49 (2008) 1256-1261.

DOI: 10.2320/matertrans.mra2007304

Google Scholar

[12] C. B. Ponton, R. D. Rawlings, Vickers indentation fracture toughness test Part 1 Review of literature and formulation of standardized indentation toughness equations, Mater. Sci. Technol. 5 (1989) 865-872.

DOI: 10.1179/mst.1989.5.9.865

Google Scholar

[13] A. E. McHale ed., Phase equilibria diagram: phase diagrams for ceramists vol. 10, The American Ceramic Society, Ohio, (1994).

Google Scholar

[14] A. Nino, Y. Nakaibayashi, S. Sugiyama, H. Taimatsu, Microstructure and mechanical properties of WC-SiC composites, Mater. Trans. 52 (2011) 1641-1645.

DOI: 10.2320/matertrans.m2011045

Google Scholar

[15] A. Nino, N. Takahashi, S. Sugiyama, H. Taimatsu, Effects of carbide grain growth inhibitors on the microstructures and mechanical properties of WC–SiC–Mo2C hard ceramics, Int. J. Refract. Met. Hard Mater. 43 (2014) 150-156.

DOI: 10.1016/j.ijrmhm.2013.11.016

Google Scholar

[16] Powder Diffraction Files, JCPDS-International Center for Diffraction Data, Pennsylvania: 1994, No. 25-1047.

Google Scholar

[17] Powder Diffraction Files, JCPDS-International Center for Diffraction Data, Pennsylvania: 1994, No. 38-1364.

Google Scholar

[18] Powder Diffraction Files, JCPDS-International Center for Diffraction Data, Pennsylvania: 1994, No. 25-0284.

Google Scholar

[19] Powder Diffraction Files, JCPDS-International Center for Diffraction Data, Pennsylvania: 1994, No. 35-0776.

Google Scholar

[20] L. E. Toth, Transition Metal Carbides and Nitrides, Academic, New York, (1971).

Google Scholar

[22] I. N. Frantsvich, E. A. Zhurakovskii, A. B. Lyashchenko, Elastic constants and characteristics of the electron structure of certain classes of refractory compounds obtained by the metal-powder method, Inorg. Mater. 3 (1967) 6-12.

Google Scholar

[22] C. Kral, W. Lengauer, D. Rafaja, P. Ettmayer, Critical review on the elastic properties of transition metal carbides, nitrides and carbonitrides, J. Alloy. Compd. 265 (1998) 215-233.

DOI: 10.1016/s0925-8388(97)00297-1

Google Scholar

[23] A. T. Santhanam, Introduction to the chemistry of transition metal carbides and nitrides, In: Oyama ST, editor, Transition Metal Carbides and Nitrides: Application of Transition Metal Carbides and Nitrides in Industrial Tools, Blackie Acad. And Prof London, (1996).

DOI: 10.1007/978-94-009-1565-7_2

Google Scholar

[24] P. T. B. Shaffer. Plenum Press Handbook of High Temperature Materials, Materials Index Plenum Press, New York, (1964).

Google Scholar

[25] V. S. Neshpor, G. V. Samsonov, The brittleness of metallike compound, Fiz. Met. Metalloved. 4 (1957) 181-182.

Google Scholar

[26] P. Ettmayer, W. Lengauer, Carbides: Transition metal solid-state chemistry. In: Encyclopedia of Inorganic Chemistry, Wiley, New York, (1999) 519-531.

DOI: 10.1002/0470862106.ia034

Google Scholar

[27] C. K. Jun, P. T. B. Shaffer, J. Less-Common Metals 23 (1971) 367-373.

Google Scholar

[28] A. P. Miodownik, Young's modulus for carbides of 3d elements (with particular reference to Fe3C), Mater. Sci. Technol. 10 (1994) 190-192.

Google Scholar

[29] R. W. Rice, C. C. Wu, F. Borchelt, Hardness–grain-size relations in ceramics, J. Am. Ceram. Soc. 77 (1994) 2539-2553.

Google Scholar