[1]
K. Lee, Y. Hwang, S. Cheong, L. Kwon, S. Kim, J. Lee, Performance evaluation of nano-lubricants of fullerene nanoparticles in refrigeration mineral oil, Curr. Appl. Phys. 9 (2009) e128–e131.
DOI: 10.1016/j.cap.2008.12.054
Google Scholar
[2]
M. Liu, M.C. Lin, C. Wang, Enhancements of thermal conductivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system, Nanoscale Res. Lett. 6 (2011) 1-13.
DOI: 10.1186/1556-276x-6-297
Google Scholar
[3]
S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transf. 121 (1999) 280–289.
DOI: 10.1115/1.2825978
Google Scholar
[4]
M.A. Akhavan-Behabadi, F. Hekmatipour, S.M. Mirhabibi, B. Sajadi, An empirical study on heat study on heat transfer and pressure drop properties of heat transfer oil-copper oxide nanofluid in microfine tube, Int. J. Heat Mass Transf. 57 (2014).
DOI: 10.1016/j.icheatmasstransfer.2014.07.025
Google Scholar
[5]
J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thomson, Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett. 78 (2001) 718–720.
DOI: 10.1063/1.1341218
Google Scholar
[6]
M.A. Akhavan-Behabadi, F. Hekmatipour, S.M. Mirhabibi, B. Sajadi, Experimental investigation of thermal–rheological properties and heat transfer behavior of the heat transfer oil–copper oxide (HTO–CuO) nanofluid in smooth tubes, Exp. Therm. Fluid Sci. 68 (2015).
DOI: 10.1016/j.expthermflusci.2015.07.008
Google Scholar
[7]
R. Agarwal, K. Verma, N.K. Agrawal, R.K. Duchaniya, R. Singh, Synthesis, characterization, thermal conductivity and sensitivity of CuO nanofluids, Appl. Therm. Eng. 102 (2016) 1024–1036.
DOI: 10.1016/j.applthermaleng.2016.04.051
Google Scholar
[8]
M. Kole, T.K. Dey, Role of interfacial layer and clustering on the effective thermal conductivity of CuO-gear oil nanofluids, Exp. Therm. Fluid Sci. 35 (2011) 1490–1495.
DOI: 10.1016/j.expthermflusci.2011.06.010
Google Scholar
[9]
C. Dames, G. Chen, 1ω, 2ω, and 3ω methods for measurements of thermal properties. Rev. Sci. Instrum. 76 (2005) 124902.
Google Scholar
[10]
A. Turgut, C. Sauter, M. Chirtoc, J. F Henry, S. Tavman, I. Tavman, & J. Pelzl, AC hot wire measurement of thermophysical properties of nanofluids with 3ω method, Eur Phys. J. Spec. Top. 153 (2008) 349–352.
DOI: 10.1140/epjst/e2008-00459-7
Google Scholar
[11]
J. F Hoffmann, J.F. Henry, G. Vaitilingom, R. Olives, M. Chirtoc, D. Caron, X. Py, Temperature dependence of thermal conductivity of vegetable oils for use in concentrated solar power plants, measured by 3omega hot wire method, Int. J. Therm. Sci. 107 (2016).
DOI: 10.1016/j.ijthermalsci.2016.04.002
Google Scholar
[12]
F.D.S. Marquis, L.P.F. Chibante, Improving the Heat Transfer of Nanofluids and Nanolubricants with Carbon Nanotubes, JOM. 57 (2005) 32-43.
DOI: 10.1007/s11837-005-0180-4
Google Scholar