Damping Capacity of Metallic Materials for Automotive Industry

Article Preview

Abstract:

New requests from the automotive industry suppose to apply new materials with mechanical resistance to heat and vibrations and also with low weight. In order to replace plastic materials with high damping capacity a viable solution can be the metallic materials with sufficient internal friction to transform the external mechanical energy in thermal energy without affecting the microstructure or the mechanical properties of the metallic materials. In automotive applications an important role, especially in low velocity impacts, are the bumper elements. In this article possibility of copper-based shape memory alloys to fulfill the damping necessity of metallic materials is analyzed. Dynamic - mechanical analyze of few copper based shape memory alloys is realized and the results compared to proposed a better solution of Cu-based shape memory alloy for damping materials applications. The damping capacity difference between martensite and austenite like phases is also analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

164-167

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.Q. Jiao, Y.H. Wen, N. Li, J.Q. He, J. Teng, Effect of solution treatment on damping capacity and shape memory effect of a CuAlMn , Journal of Alloys and Compounds 491, (2010) 627-630.

DOI: 10.1016/j.jallcom.2009.11.026

Google Scholar

[2] N. Cimpoeşu, S. Stanciu, M. Meyer, I. Ioniţă, R. Cimpoeşu Hanu, Effect of stress on damping capacity of a shape memory alloy CuZnAl, Journal of Optoelectronics and Advanced Materials, 12 (2010) 386-391.

Google Scholar

[3] M. -A. Paun, R. Cimpoesu Hanu, N. Cimpoesu, M. Agop, C. Baciu, S. Stratulat, C. Nejneru, Internal friction phenomena at polymeric and metallic shape memory materials. Experimental and theoretical results, Materiale Plastice 47 (2010) 209-214.

Google Scholar

[4] A.G. Shivasiddaramaiah, U.S. Mallik, L. Shivaramu, S. Prashantha, Evaluation of shape memory effect and damping characteristics of Cu–Al–Be–Mn shape memory alloys, Perspectives in Science 8 (2016) 244-246.

DOI: 10.1016/j.pisc.2016.04.041

Google Scholar

[5] S. Montecinos, Influence of microstructural parameters on damping capacity in CuAlBe shape memory alloys, Materials & Design, 68 (2015) 215-220.

DOI: 10.1016/j.matdes.2014.12.034

Google Scholar

[6] Y. Sutou, T. Omori, N. Koeda, R. Kainuma, Effects of grain size and texture on damping properties of Cu-Al-Mn-based shape memory alloys, Materials Science and Engineering A. 438-440 (2006)743-746.

DOI: 10.1016/j.msea.2006.02.085

Google Scholar

[7] J. San Juan, M. L. Nó, Damping behavior during martensitic transformation in shape memory alloys, Journal of Alloys and Compounds 355 (2003), 65-71.

DOI: 10.1016/s0925-8388(03)00277-9

Google Scholar

[8] A.G. Shivasiddaramaiah, U.S. Mallik, L. Shivaramu, S. Prashantha, Evaluation of shape memory effect and damping characteristics of Cu–Al–Be–Mn shape memory alloys, Perspectives in Science 8 (2016) 244-246.

DOI: 10.1016/j.pisc.2016.04.041

Google Scholar

[9] J.P. Oliveira, Z. Zeng, T. Omori, N. Zhou, R.M. Miranda, F.M. Braz Fernandes, Improvement of damping properties in laser processed superelastic Cu-Al-Mn shape memory alloys, Materials & Design 98 (2016) 280-284.

DOI: 10.1016/j.matdes.2016.03.032

Google Scholar

[10] H. Yin, Y. Yan, Y. Huo, Q. Sun, Rate dependent damping of single crystal CuAlNi shape memory alloy, Materials Letters 109 (2013), 287-290.

DOI: 10.1016/j.matlet.2013.07.062

Google Scholar

[11] D.A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys, Chapman and Hall, London (1990), 364.

Google Scholar

[12] G. Z. Zatulski, M. A. Kravchenko, V. K. Larin, A. M. Firsov, Met. Sci and Heat. Treat. 33, (1991), 861.

Google Scholar

[13] D. Delpueyo, X. Balandraud, M. Grediac, S. Stanciu, N. Cimpoesu, Measurement of Mechanical Dissipation in SMAs by Infrared Thermography, Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques And Inverse Problems, VOL 9, (2017).

DOI: 10.1007/978-3-319-42255-8_2

Google Scholar

[14] N. Cimpoesu, S. Stanciu, D. Tesloianu, R. Cimpoesu, R. F. Popa, and E. Moraru, A study of the damping capacity of mechanically processed cu – 9. 2Al – 5. 3Mn – 0. 6Fe shape memory alloys, Metal Science and Heat Treatment, 58, Nos. 11 – 12 , (2017).

DOI: 10.1007/s11041-017-0086-0

Google Scholar