Advanced Synchrotron Radiation and Neutron Scattering Techniques for Microstructural Characterization in Industrial Research

Article Preview

Abstract:

The rapid development of new materials and their application in an extremely wide variety of research and technological fields has lead to the request of increasingly sophisticated characterization methods. In particular residual stress measurements by neutron diffraction, small angle scattering of X-rays and neutrons, as well as 3D imaging techniques with spatial resolution at the micron or even sub-micron scale, like micro-and nano-computerized tomography, have gained a great relevance in recent years.Residual stresses are autobalancing stresses existing in a free body not submitted to any external surface force. Several manufacturing processes, as well as thermal and mechanical treatments, leave residual stresses within the components. Bragg diffraction of X-rays and neutrons can be used to determine residual elastic strains (and then residual stresses by knowing the material elastic constants) in a non-destructive way. Small Angle Scattering of neutrons or X-rays, complementary to Transmission Electron Microscopy, allows the determination of structural features such as volume fraction, specific surface and size distribution of inhomogeneities embedded in a matrix, in a huge variety of materials of industrial interest. X-ray microtomography is similar to conventional Computed Tomography employed in Medicine, allowing 3D imaging of the investigated samples, but with a much higher spatial resolution, down to the sub-micron scale. Some examples of applications of the experimental techniques mentioned above are described and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-66

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Albertini, M. Cegielski, H. Egner, F. Fiori, A. Ganczarski, E. Girardin, A. Giuliani, S. Hernik, V. Komlev, M. Kula, A. Manescu, A. Muc. M. Oleksy, F. Rustichelli, J. Skrzypek, F. Spinozzi, Innovative Technological Materials (Structural Properties by Neutron Scattering, Synchrotron Radiation and Modeling), Editors: J.J. Skrzypek, F. Rustichelli, Springer Publ. (2010).

DOI: 10.1007/978-3-642-12059-6

Google Scholar

[2] R. B. Knott, B. P. Schoenborn, Neutrons in Biology – A Perspective (Volume 64 of the series Basic Life Sciences, pp.1-15), Springer Publ. (1996), ISBN 978-1-4613-7680-4.

Google Scholar

[3] http: /neutronsources. org/neutron-centres. html.

Google Scholar

[4] http: /www. lightsources. org/regions.

Google Scholar

[5] International Atomic Energy Agency, Measurement of Residual Stress in Materials using Neutrons, IAEA-TECDOC-1457, IAEA (2005), ISBN 92–0–106305–9; http: /www-pub. iaea. org/MTCD/Publications/PDF/te_1457_web. pdf.

DOI: 10.1259/bjr.74.879.740297

Google Scholar

[6] M.E. Fitzpatrick, A. Lodini (eds. ), Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation, CRC Press (2003), ISBN 9780203608999.

DOI: 10.1201/9780203608999

Google Scholar

[7] I.C. Noyan, J.B. Cohen, Residual Stress - Measurement by Diffraction and Interpretation, Springer Publ. (1987), ISBN: 978-1-4613-9571-3.

Google Scholar

[8] V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods, Elsevier Publ. (1997), ISBN: 978-0d-444-82476-9.

Google Scholar

[9] P. Fratzl, Small-angle scattering in materials science - A short review of applications in alloys, ceramics and composite materials, J Appl Cryst 36(3) (2003) 397-404.

DOI: 10.1107/s0021889803000335

Google Scholar

[10] S. Nuzzo, F. Peyrin, P. Cloetens, J. Baruchel, G. Boivin, Quantification of the degree of mineralization of bone in three dimension using Synchrotron Radiation Microtomography. Med Phys 19 (2002) 2672-2681.

DOI: 10.1118/1.1513161

Google Scholar

[11] M. Salomé, F. Peyrin, P. Cloetens, C. Odet, A.M. Laval-Jeantet, J. Baruchel, P. Spanne, A synchrotron radiation microtomography system for the analysis of trabecular bone samples, Med Phys 26 (1999) 2194-2204.

DOI: 10.1118/1.598736

Google Scholar

[12] E. Maire and P.J. Withers, Quantitative X-ray tomography, Int Mat Rev 59(1) (2014) 1-43.

Google Scholar

[13] A.J. Allen, M.T. Hutchings, C.G. Windsor, C. Andreani, Neutron diffraction methods for the study of residual stress fields, Adv Phys 34 (1985) 445-473.

DOI: 10.1080/00018738500101791

Google Scholar

[14] H.G. Priesmeyer, J. Larsen, D. Meggers, Neutron diffraction for non-destructive strain/stress measurements in industrial devices, J Neutron Res. 2 (1994) 31-52.

DOI: 10.1080/10238169408200185

Google Scholar

[15] G. Bruno, F. Fiori, E. Girardin, A. Giuliani, L. Koszegi, R. Levy-Tubiana, A. Manescu, F. Rustichelli, Residual stress determination in several MMC samples submitted to different operating conditions, J Neutron Res 9 (2001) 107–117.

DOI: 10.1080/10238160108200132

Google Scholar

[16] F. Fiori, M. Marcantoni, Neutron-diffraction measurement of residual stresses in Al–Cu cold-cut welding, 74(1) (2002) s1695–s1697.

DOI: 10.1007/s003390201727

Google Scholar

[17] L.A. Feigin, D.I. Svergun, Structure analysis by small-angle X-ray and neutron scattering, Plenum Press - New York (1987), ISBN: 978-1-4757-6626-4.

Google Scholar

[18] O. Glatter, O. Kratky, Small-Angle X-ray Scattering, Academic Press, London (1982), ISBN 0-12-286280-5.

Google Scholar

[19] A. Guinier, G. Fournet, Small Angle Scattering of X-ray, Wiley, New York (1955).

Google Scholar

[20] F. Fiori, E. Girardin, G. Albertini, K. Konopka, F. Rustichelli, Small-Angle Neutron Scattering characterization of Al2O3/Ni–P nanocomposites, Mat Sci Engng B 152 (2008) 136–139.

DOI: 10.1016/j.mseb.2008.06.011

Google Scholar

[21] G. Barucca, R. Ferragut, F. Fiori, D. Lussana, P. Mengucci, F. Moia, G. Riontino, Formation and evolution of the hardening precipitates in a Mg–Y–Nd alloy, Acta Materialia 59 (2011) 4151–4158.

DOI: 10.1016/j.actamat.2011.03.038

Google Scholar

[22] E.N. Landis, E.N. Nagy, D.T. Keane, Microstructure and fracture in three dimensions, Eng Fract Mech 70 (2003) 911–25.

Google Scholar

[23] S.C. Mayo, A.W. Stevenson, S.W. Wilkins, In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science, Materials 5 (2012) 937-965.

DOI: 10.3390/ma5050937

Google Scholar

[24] International Atomic Energy Agency, Neutron Imaging: A Non-Destructive Tool for Materials Testing, IAEA-TECDOC-1604, IAEA (2008), ISBN 978–92–0–110308–6; http: /www-pub. iaea. org/MTCD/publications/PDF/te_1604_web. pdf.

DOI: 10.1259/bjr.74.879.740297

Google Scholar

[25] J. Hohe, V. Hardenacke, V. Fascio, Y. Girard, J. Baumeister, K. Stöbener, J. Weise, D. Lehmhus, S. Pattofatto, H. Zeng, H. Zhao, V. Calbucci, F. Rustichelli, F. Fiori, Numerical and experimental design of graded cellular sandwich cores for multi-functional aerospace applications, Materials and Design 39 (2012).

DOI: 10.1016/j.matdes.2012.01.043

Google Scholar

[26] A.T. Huber, L.J. Gibson. Anisotropy of foams. J Mater Sci 23 (1988) 3031–3040.

Google Scholar

[27] L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press (1999), ISBN 0521499119.

Google Scholar