Effect of Ionic Liquid Environment on the Corrosion Resistance of Al-Based Alloy

Article Preview

Abstract:

Electrodeposition of Al and its alloys from ionic liquids has been extensively investigated during the years and has received significant consideration as non-aqueous electrolytes for the electrodeposition. As environment-friendly solvents, ionic liquids have also good prospective to substitute the old-style risky solvents. In this paper, the results obtained after monitoring of some Al based materials involved in the deposition process and in a real contact with chloride and ionic liquid rich environment are presented and discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-102

Citation:

Online since:

August 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Fajardo, D.M. Bastidas, M. Criado, J.M. Bastidas, Electrochemical study on the corrosion behaviour of a new low-nickel stainless steel in carbonated alkaline solution in the presence of chlorides, Electrochimica Acta 129 (2014) 160-170.

DOI: 10.1016/j.electacta.2014.02.107

Google Scholar

[2] S.M. Abd El Haleem, E.E. Abd El Aal, S. Abd El Wanees, A. Diab: Environmental factors affecting the corrosion behaviour of reinforcing steel: I. The early stage of passive film formation in Ca(OH)2 solutions, Corrosion Science 52 (2010) 3875-3882.

DOI: 10.1016/j.corsci.2010.07.035

Google Scholar

[3] I. Peter, M. Rosso, F.S. Gobber: Study of protective coatings for aluminum die casting molds, Applied Surface Science 358 (2015) 563-571.

DOI: 10.1016/j.apsusc.2015.08.013

Google Scholar

[4] A. Brenner, Electrodeposition of Alloys, Vol. I and II, Academic Press, New York (1963).

Google Scholar

[5] F. Liu, Y. Deng, X. Han, W. Hu, C. Zhong Electrodeposition of metals and alloys from ionic liquids, Journal of Alloys and Compounds 654 (2016) 163-170.

DOI: 10.1016/j.jallcom.2015.09.137

Google Scholar

[6] R.D. Rogers, G.A. Voth, Acc. Chem. Res. 40 (2007) 1077-1078.

Google Scholar

[7] P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, Wiley Online Library, (2008).

Google Scholar

[8] P. Walden, Bull. Acad. Imper. Sci. St. Petersbg. 8 (1914) 405-422.

Google Scholar

[9] D.B. Keyes, S. Swann Jr., W. Klabunde, S.T. Schicktanz, Industrial & Engineering Chemistry 20 (1928) 1068-1076.

Google Scholar

[10] F.H. Hurley, T.P. Weir, Journal of the Electrochemical Society 98 (1951) 204-207.

Google Scholar

[11] Y. Zhao, T.J. VanderNoot, Electrochimica Acta 42 (1997) 1639.

Google Scholar

[12] R.T. Carlin, W. Crawford, M. Bersch, Journal of the Electrochemical Society 139 (1992) 2720-2726.

Google Scholar

[13] T. Tsuda, C.L. Hussey, G.R. Stafford, Journal of the Electrochemical Society 151 (2004) 379-385.

Google Scholar

[14] S. Zein El Abedin, E.M. Moustafa, R. Hempelmann, H. Natter, F. Endres, Chem. Phys. 7 (2006) 1535-1542.

DOI: 10.1002/cphc.200600095

Google Scholar

[15] S. Zein El Abedin et al, Additive free electrodeposition of nanocristalline aluminium in water and air stable ionic liquid; Electrochemistry communications 7 (2005) 1111-1116.

DOI: 10.1016/j.elecom.2005.08.010

Google Scholar

[16] M. Rosso, F. Calosso, I. Peter, Grain growth on galvanic deposition of aluminium, Metalurgia International Vol. 5 (2011) 15-18.

Google Scholar

[17] I. Peter, M. Rosso, Simulation of electrodeposition of Al from ionic liquid, Materials Science Forum Volume 794-796 (2014) 229-234.

DOI: 10.4028/www.scientific.net/msf.794-796.229

Google Scholar

[18] B. Dilasari, Y. Jung, K. Kwon, Comparative study of corrosion behavior of metals in protic and aprotic ionic liquids, Electrochemistry Communications 73 (2016) 20–23.

DOI: 10.1016/j.elecom.2016.10.009

Google Scholar