Effect of Aluminum Addition on AlxCoFeMnNiZn Multi-Component Production

Article Preview

Abstract:

Five multi-component alloy (MCA) formulations of CoFeMnNiZn (MCA01), Al0.5CoFeMnNiZn (MCA02), Al1.0CoFeMnNiZn (MCA03), Co5Fe5Mn30Ni20Zn40 (MCA04) and Al8.4Co4.6Fe4.6Mn27Ni18.4Zn37 (MCA05) were prepared by mechanical alloying and melting process (MAM). Five-component alloys of MCA01-MCA05 were designed using empirical formulae for high entropy alloys. Phase formation and microstructure were evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that MCA01 was partially melted by MAM process. However, MCA02-MCA05 could be melted and cast by MAM process. The microstructures of as-cast MCA02 and MCA03 showed dendritic solidification. Nevertheless, the as-cast MCA04 showed microstructure similar to that of Ni-based superalloy, i.e., the as-cast MCA04 consisted of γ matrix and γ′ phase. Moreover, egg type core shell structure was found in the interdendritic regions of the MCA05 alloy. In addition, the Al-added MCA02 and MCA03 alloys showed crystal structures of FCC1, FCC2 and BCC. MCA04 alloy demonstrated crystal structure of FCC whereas MCA05 alloy had crystal structures of FCC and Primitive Cubic.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-59

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299-303.

DOI: 10.1002/adem.200300567

Google Scholar

[2] B. Cantor, Multicomponent and high entropy alloys, Entropy 16 (9) (2014) 4749-4768.

DOI: 10.3390/e16094749

Google Scholar

[3] J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chimie. Sci. Materiaux. 31 (2006) 633-648.

DOI: 10.3166/acsm.31.633-648

Google Scholar

[4] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta. Mater. 81 (2014) 428-441.

DOI: 10.1016/j.actamat.2014.08.026

Google Scholar

[5] O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18 (9) (2010) 1758-1765.

DOI: 10.1016/j.intermet.2010.05.014

Google Scholar

[6] Z. Tang, T. Yuan, C.W. Tsai, J.W. Yeh, C.D. Lundin, P.K. Liaw, Fatigue behavior of a wrought Al0. 5CoCrCuFeNi two-phase high-entropy alloy, Acta. Mater. 99 (2015) 247-258.

DOI: 10.1016/j.actamat.2015.07.004

Google Scholar

[7] M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, Fatigue behavior of Al0. 5CoCrCuFeNi high entropy alloys, Acta. Mater. 60 (16) (2012) 5723-5734.

DOI: 10.1016/j.actamat.2012.06.046

Google Scholar

[8] A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions, Mater. Sci. Eng. A 533 (2012) 107-118.

DOI: 10.1016/j.msea.2011.11.045

Google Scholar

[9] A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics 39 (2013) 74-78.

DOI: 10.1016/j.intermet.2013.03.018

Google Scholar

[10] M. Seifi, D. Li, Z. Yong, P.K. Liaw, J.J. Lewandowski, Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys, JOM 67(10) (2015) 2288-2295.

DOI: 10.1007/s11837-015-1563-9

Google Scholar

[11] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1-93.

DOI: 10.1016/j.pmatsci.2013.10.001

Google Scholar

[12] Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 10 (6) (2008) 534-538.

DOI: 10.1002/adem.200700240

Google Scholar

[13] C.T. Liu, Physical metallurgy and mechanical properties of ductile ordered alloys (Fe, Co, Ni)3V, Int. Mater. Rev. 29 (1) (1984) 168-194.

DOI: 10.1179/imtr.1984.29.1.168

Google Scholar

[14] J.H. Zhu, P.K. Liaw, C.T. Liu, Effect of electron concentration on the phase stability of NbCr2-based laves phase alloys, Mater. Sci. Eng. A 239-240 (1997) 260–264.

DOI: 10.1016/s0921-5093(97)00590-x

Google Scholar

[15] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans. 46 (12) (2005).

DOI: 10.2320/matertrans.46.2817

Google Scholar

[16] Z. Wang, Y. Huang, Y. Yang, J. Wang, C.T. Liu, Atomic-size effect and solid solubility of multicomponent alloys, Scr. Mater. 94 (2015) 28-31.

DOI: 10.1016/j.scriptamat.2014.09.010

Google Scholar

[17] J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys, JOM 65 (12) (2013) 1759-1771.

DOI: 10.1007/s11837-013-0761-6

Google Scholar

[18] H. Baker, ASM handbook: alloy phase diagram, ASM International, Ohio, (1992).

Google Scholar

[19] S. Yong, T. Sugui, Y. Huichen, S. Delong, L. Shuang, Microstructure evolution and its effect on creep behavior of single crystal Ni-based superalloys with various orientations, Mater. Sci. Eng. A 668 (2016) 243-254.

DOI: 10.1016/j.msea.2016.05.032

Google Scholar

[20] L. Xu, C.Q. Sun, C.Y. Cui, C. Zhang, Effects of microstructure on the creep properties of a new Ni-Co base superalloy, Mater. Sci. Eng. A 678 (2016) 110-115.

DOI: 10.1016/j.msea.2016.09.060

Google Scholar

[21] N. Liu, Investigation on the phase separation in undercooled Cu-Fe melts, J. Non-Cryst. Solids 358 (2012) 196-199.

DOI: 10.1016/j.jnoncrysol.2011.09.009

Google Scholar

[22] W. Yang, Z.F. Xu, W.J. Li, C.C. Cai, S. Li, F. Liu, G.C. Yang, Comparisons of grain refinement and recalescence behavior during the rapid solidification of undercooled Cu-Co and Cu-Ni alloys, Phys. B 406 (19) (2011) 3710-3714.

DOI: 10.1016/j.physb.2011.06.077

Google Scholar

[23] W. Yang, H. Yua, J.H. Wang, C.C. Cai, Z.F. Xu, S. Li, F. Liu, G.C. Yang, Application of dendrite fragmentation to fabricate the homogeneous dispersed structure in undercooled Cu-Co immiscible alloy, J. Alloys Compd. 509 (40) (2011) 9675-9678.

DOI: 10.1016/j.jallcom.2011.07.077

Google Scholar

[24] N. Liu, F. Liu, Z. Chen, G. Yang, C. Yang, Y. Zhou, Liquid-phase separation in rapid solidification of undercooled Fe-Co-Cu melts, J. Mater. Sci. Tech. 28 (7) (2012) 622-625.

DOI: 10.1016/s1005-0302(12)60107-8

Google Scholar

[25] P.H. Wu, N. Liu, W. Yang, Z.X. Zhu, Y.P. Lu, X.J. Wang, Microstructure and solidification behavior of multicomponent CoCrCuxFeMoNi high-entropy alloys, Mater. Sci. Eng. A 642 (2015) 142-149.

DOI: 10.1016/j.msea.2015.06.061

Google Scholar