[1]
J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299-303.
DOI: 10.1002/adem.200300567
Google Scholar
[2]
B. Cantor, Multicomponent and high entropy alloys, Entropy 16 (9) (2014) 4749-4768.
DOI: 10.3390/e16094749
Google Scholar
[3]
J.W. Yeh, Recent progress in high-entropy alloys, Ann. Chimie. Sci. Materiaux. 31 (2006) 633-648.
DOI: 10.3166/acsm.31.633-648
Google Scholar
[4]
Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta. Mater. 81 (2014) 428-441.
DOI: 10.1016/j.actamat.2014.08.026
Google Scholar
[5]
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, P.K. Liaw, Refractory high-entropy alloys, Intermetallics 18 (9) (2010) 1758-1765.
DOI: 10.1016/j.intermet.2010.05.014
Google Scholar
[6]
Z. Tang, T. Yuan, C.W. Tsai, J.W. Yeh, C.D. Lundin, P.K. Liaw, Fatigue behavior of a wrought Al0. 5CoCrCuFeNi two-phase high-entropy alloy, Acta. Mater. 99 (2015) 247-258.
DOI: 10.1016/j.actamat.2015.07.004
Google Scholar
[7]
M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, P.K. Liaw, Fatigue behavior of Al0. 5CoCrCuFeNi high entropy alloys, Acta. Mater. 60 (16) (2012) 5723-5734.
DOI: 10.1016/j.actamat.2012.06.046
Google Scholar
[8]
A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, O.N. Senkov, Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions, Mater. Sci. Eng. A 533 (2012) 107-118.
DOI: 10.1016/j.msea.2011.11.045
Google Scholar
[9]
A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics 39 (2013) 74-78.
DOI: 10.1016/j.intermet.2013.03.018
Google Scholar
[10]
M. Seifi, D. Li, Z. Yong, P.K. Liaw, J.J. Lewandowski, Fracture toughness and fatigue crack growth behavior of as-cast high-entropy alloys, JOM 67(10) (2015) 2288-2295.
DOI: 10.1007/s11837-015-1563-9
Google Scholar
[11]
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1-93.
DOI: 10.1016/j.pmatsci.2013.10.001
Google Scholar
[12]
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Solid-solution phase formation rules for multi-component alloys, Adv. Eng. Mater. 10 (6) (2008) 534-538.
DOI: 10.1002/adem.200700240
Google Scholar
[13]
C.T. Liu, Physical metallurgy and mechanical properties of ductile ordered alloys (Fe, Co, Ni)3V, Int. Mater. Rev. 29 (1) (1984) 168-194.
DOI: 10.1179/imtr.1984.29.1.168
Google Scholar
[14]
J.H. Zhu, P.K. Liaw, C.T. Liu, Effect of electron concentration on the phase stability of NbCr2-based laves phase alloys, Mater. Sci. Eng. A 239-240 (1997) 260–264.
DOI: 10.1016/s0921-5093(97)00590-x
Google Scholar
[15]
A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans. 46 (12) (2005).
DOI: 10.2320/matertrans.46.2817
Google Scholar
[16]
Z. Wang, Y. Huang, Y. Yang, J. Wang, C.T. Liu, Atomic-size effect and solid solubility of multicomponent alloys, Scr. Mater. 94 (2015) 28-31.
DOI: 10.1016/j.scriptamat.2014.09.010
Google Scholar
[17]
J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys, JOM 65 (12) (2013) 1759-1771.
DOI: 10.1007/s11837-013-0761-6
Google Scholar
[18]
H. Baker, ASM handbook: alloy phase diagram, ASM International, Ohio, (1992).
Google Scholar
[19]
S. Yong, T. Sugui, Y. Huichen, S. Delong, L. Shuang, Microstructure evolution and its effect on creep behavior of single crystal Ni-based superalloys with various orientations, Mater. Sci. Eng. A 668 (2016) 243-254.
DOI: 10.1016/j.msea.2016.05.032
Google Scholar
[20]
L. Xu, C.Q. Sun, C.Y. Cui, C. Zhang, Effects of microstructure on the creep properties of a new Ni-Co base superalloy, Mater. Sci. Eng. A 678 (2016) 110-115.
DOI: 10.1016/j.msea.2016.09.060
Google Scholar
[21]
N. Liu, Investigation on the phase separation in undercooled Cu-Fe melts, J. Non-Cryst. Solids 358 (2012) 196-199.
DOI: 10.1016/j.jnoncrysol.2011.09.009
Google Scholar
[22]
W. Yang, Z.F. Xu, W.J. Li, C.C. Cai, S. Li, F. Liu, G.C. Yang, Comparisons of grain refinement and recalescence behavior during the rapid solidification of undercooled Cu-Co and Cu-Ni alloys, Phys. B 406 (19) (2011) 3710-3714.
DOI: 10.1016/j.physb.2011.06.077
Google Scholar
[23]
W. Yang, H. Yua, J.H. Wang, C.C. Cai, Z.F. Xu, S. Li, F. Liu, G.C. Yang, Application of dendrite fragmentation to fabricate the homogeneous dispersed structure in undercooled Cu-Co immiscible alloy, J. Alloys Compd. 509 (40) (2011) 9675-9678.
DOI: 10.1016/j.jallcom.2011.07.077
Google Scholar
[24]
N. Liu, F. Liu, Z. Chen, G. Yang, C. Yang, Y. Zhou, Liquid-phase separation in rapid solidification of undercooled Fe-Co-Cu melts, J. Mater. Sci. Tech. 28 (7) (2012) 622-625.
DOI: 10.1016/s1005-0302(12)60107-8
Google Scholar
[25]
P.H. Wu, N. Liu, W. Yang, Z.X. Zhu, Y.P. Lu, X.J. Wang, Microstructure and solidification behavior of multicomponent CoCrCuxFeMoNi high-entropy alloys, Mater. Sci. Eng. A 642 (2015) 142-149.
DOI: 10.1016/j.msea.2015.06.061
Google Scholar