[1]
M.Z. Bukhari, , D. Brabazon, and M.S.J. Hashmi, Application of metal matrix composite of CuSiC and AlSiC as electronics packaging materials, The 28th International Manufacturing Conference (IMC 28). Dublin City University, Republic of Ireland (2011).
Google Scholar
[2]
S. Rawal, Metal-matrix composites for space applications, J. of Min. Met. & Mater. Soc. 53 (2001) 14-17.
Google Scholar
[3]
N. Chawla, K.K. Chawla, Metal-matrix composites in ground transportation, J. of Min. Met. Mater. Soc. 58 (2006) 67-70.
DOI: 10.1007/s11837-006-0231-5
Google Scholar
[4]
Y.C. Lin, H.C. Li, S.S. Liou, M.T. Shie, Mechanism of plastic deformation of powder Metallurgy metal matrix composites of Cu-Sn/SiC and 6061/SiC under compressive stress, Mater. Sci. Eng. A, 373 (2004) 363-369.
DOI: 10.1016/j.msea.2004.02.011
Google Scholar
[5]
B. Ogel, R. Gurbuz, Microstructural characterization and tensile properties of hot pressed Al-SiC composites prepared from pure Al and Cu powders, Mater. Sci. Eng. A, 301 (2001) 213-220.
DOI: 10.1016/s0921-5093(00)01656-7
Google Scholar
[6]
J.C. Lee, J.P. Ahn, J.H. Shim, Z. Shi, H.I. Lee, Control of the interface in SiC/Al composites. Scr. Mater. 41 (1999) 895-900.
DOI: 10.1016/s1359-6462(99)00227-4
Google Scholar
[7]
A. Ngeekoh, V. Thongnoppakoon, A. Changlor, T. Jindangam, N. Phongreed, T. Patcharawit, N. Chuankrerkkul, Microstructure and phase analysis of precipitation hardened silicon carbide particulate-reinforced aluminium composite fabricated by PIM, the 41st Congress on Science and Technology of Thailand (STT41) Nakhon Ratchasima, Thailand (2014).
Google Scholar
[8]
G.B. Schaffer, B.J. Hall, S.J. Bonner, S.H. Huo, T.B. Sercombe, The effect of the atmosphere and the role of pore filling on the sintering of aluminium. Acta Mater. 54 (2006) 131-138.
DOI: 10.1016/j.actamat.2005.08.032
Google Scholar
[9]
J.M. Martín, F. Castro, Liquid phase sintering of P/M aluminium alloys: effect of processing conditions, J. of Mater. Proc. Tech. 143-144 (2003) 814-821.
DOI: 10.1016/s0924-0136(03)00335-2
Google Scholar
[10]
P. Jin, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, Y. Liu, S. Li, Effect of solution temperature on aging behavior and properties of SiCp/AlCuMg composites, Mater. Sci. Eng. A, 528 (2011) 1504-1511.
DOI: 10.1016/j.msea.2010.10.075
Google Scholar
[11]
B.M. Gable, A.W. Zhu, G.J. Shiflet, E.A. Starke Jr., Assessment of the aluminum-rich corner of the Al–Cu–Mg–(Ag) phase diagram, CALPHAD 32 (2008) 256–267.
DOI: 10.1016/j.calphad.2007.08.003
Google Scholar
[12]
J. Roy, S. Chandra, S. Das, S. Maitra, Oxidation behaviour of silicon carbide-a review. Rev. Adv. Mater. Sci. 38 (2014) 29-39.
Google Scholar
[13]
A. Ureña, E.E. Martínez, P. Rodrigo, L. Gil, Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites, Compo. Sci. Tech. 64 (2004) 1843-1854.
DOI: 10.1016/j.compscitech.2004.01.010
Google Scholar
[14]
M. Rodríguez-Reyes, M.I. Pech-Canul, J.C. Rendón-Angeles, J. López-Cuevas, Limiting the development of Al4C3 to prevent degradation of Al/SiCp composites processed by pressureless infiltration, Compo. Sci. and Tech. 66 (2006) 1056-1062.
DOI: 10.1016/j.compscitech.2005.07.025
Google Scholar
[15]
T. Sritharan, L.S. Chan, L.K. Tan, N.P. Hung, A feature of the reaction between Al and SiC particles in an MMC, Mater. Charac, 47 (2001) 75-77.
DOI: 10.1016/s1044-5803(01)00144-9
Google Scholar
[16]
D. Hull, T.W. Clyne, An introduction to composite materials, second ed. Cambridge Solid State Science Series, Cambridge University Press, 1996.
Google Scholar
[17]
A. Kimura, M. Shibata, M. Katayama, T. Kanie, H. Takada, Reduction mechanism of surface oxide in aluminium alloy powders containing magnesium studied by X-ray photoelectron spectroscopy using synchrotron radiation, Appl. Phys. Lett., 70 (1997).
DOI: 10.1063/1.119250
Google Scholar
[18]
S. Zhongliang, G. Mingyuan, L. Junyou, L. Guoquan, L. Jae-chul, Z. Di, W. Renjie, Interfacial reaction between the oxidized SiC particles and Al-Mg alloys, Chin. Sci. Bull. 46 (2001)1984-(1952).
Google Scholar
[19]
T.W. Kim, Determination of densification behavior of Al-SiC metal matrix composites during consolidation processes, Mater. Sci. Eng. A, 483-484 (2008) 648-651.
DOI: 10.1016/j.msea.2006.09.175
Google Scholar
[20]
J. Asensio-Lozano, B. Suárez-Peña, G.F.V. Voort, Effect of processing steps on the mechanical properties and surface appearance of 6063 aluminium extruded products. Mater. 7 (2014) 4224-4242.
DOI: 10.3390/ma7064224
Google Scholar
[21]
J. Hashim, L. Looney, M.S.J. Hashmi, The wettability of SiC particles by molten aluminium alloy, J. Mater. Proc. Tech. 119 (2001) 324-328.
DOI: 10.1016/s0924-0136(01)00975-x
Google Scholar
[22]
T. Udomphol, R. Buntan, M. Boonma, The fabrication of aluminium composites via stir-mixed and particulate injection casting, Adv. Sci. Lett. 12 (2012) 223–229.
DOI: 10.1166/asl.2012.2751
Google Scholar
[23]
R.M. German, Powder metallurgy and particulate materials processing, Metal Powder Industries Federation. (2005).
Google Scholar
[24]
T. Fan, Z. Shi, D. Zhang, R. Wu, The interfacial reaction characteristics in SiC/Al composite above liquidus during remelting, Mater. Sci. Eng. A, 257 (1998) 281-286.
DOI: 10.1016/s0921-5093(98)00855-7
Google Scholar
[25]
I.A. MacAskill, R.L. Hexemer-Jr, I.W. Donaldson, D.P. Bishop, Effects of magnesium, tin and nitrogen on the sintering response of aluminum powder, J. Mater. Proc. Tech. 210 (2010) 2252-2260.
DOI: 10.1016/j.jmatprotec.2010.08.018
Google Scholar
[26]
E. Füglein, U. Schubert, Formation of Mg2Si from solid silicon monoxide, and solid-sate comproportionation between Mg2Si and SiO. Chem. Mater, 11 (1999) 865-866.
DOI: 10.1021/cm980775v
Google Scholar
[27]
R.H. Beton, E.C. Rollason, J. Inst. Metals, 86 (1957-1958) 77.
Google Scholar
[28]
L. Löchte, A. Gitt, G. Gottstein, I. Hurtado, Simulation of the evolution of GP zones in Al–Cu alloys: an extended Cahn–Hilliard approach, Acta Mater. 48 (2000) 2969-2984.
DOI: 10.1016/s1359-6454(00)00073-2
Google Scholar
[29]
H.K. Hardy, The ageing characteristics of ternary aluminium-copper alloys with cadmium indium or tin. 80 (1951–52) 483–492.
Google Scholar
[30]
B.G. Kim, S.L. Dong, S.D. Park, Effects of thermal processing on thermal expansion coefficient of a 50 vol. % SiCp/Al composite, Mater. Chem. Phys. 72 (2001) 42-47.
DOI: 10.1016/s0254-0584(01)00306-6
Google Scholar
[31]
N. Chawla, Y.L. Shen, Mechanical behavior of particle reinforced metal matrix composites, Adv. Eng. Mater. 3 (2001) 357-370.
DOI: 10.1002/1527-2648(200106)3:6<357::aid-adem357>3.0.co;2-i
Google Scholar
[32]
A. Slipenyuk, V. Kuprin, Milman, V.Y. Goncharuk, J. Eckert, Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio, Acta Mater. 54 (2006).
DOI: 10.1016/j.actamat.2005.08.036
Google Scholar
[33]
T. Udomphol, B. Inpanya, N. Chuankrerkkul, Characterization of feedstocks for injection molded SiCp-reinforced Al-4. 5 wt. %Cu composite, Adv. Mater. Res. 383-390 (2012) 3234-3240.
DOI: 10.4028/www.scientific.net/amr.383-390.3234
Google Scholar