Mechanical Properties of As-Exposed Al-SiCp Composite Fabricated by Powder Injection Moulding

Article Preview

Abstract:

This research investigated mechanical degradation of powder injection moulded SiCp-reinforced aluminium composite subjected to moderate temperature exposures. Aluminium composite of 20 vol.% SiCp reinforcement was produced by powder injection moulding and sintering at 680°C, followed by 500°C solution treatment plus 150°C for 6 hours artificial aging, and subsequent exposures at 100, 200 and 300°C for 10 and 100 hours. It was found that short-term exposure for 10 hours provided increasing hardness with increasing exposure temperature, while long-term exposure for 100 hours led to an opposite result. The maximum micro Vickers hardness was obtained at 182.2 Hv for Al-SiCp composite exposed at 300°C for 10 hours. Tensile strength was however found deleterious with increasing both exposure temperature and time. The maximum tensile strength was achieved at 191.2 MPa for Al-SiCp composite exposed at 100°C for 100 hours. The formations of AlN, Mg2Si and Al2Cu were observed in both age-hardened and as-exposed conditions. Furthermore, the highest temperature exposure at 300°C and extended exposure time at 100 hours resulted in the lowest hardness and tensile properties due possibly to the loss of coherency of precipitates. SiCp clusters were the main cause of the tensile failure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

60-69

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.Z. Bukhari, , D. Brabazon, and M.S.J. Hashmi, Application of metal matrix composite of CuSiC and AlSiC as electronics packaging materials, The 28th International Manufacturing Conference (IMC 28). Dublin City University, Republic of Ireland (2011).

Google Scholar

[2] S. Rawal, Metal-matrix composites for space applications, J. of Min. Met. & Mater. Soc. 53 (2001) 14-17.

Google Scholar

[3] N. Chawla, K.K. Chawla, Metal-matrix composites in ground transportation, J. of Min. Met. Mater. Soc. 58 (2006) 67-70.

DOI: 10.1007/s11837-006-0231-5

Google Scholar

[4] Y.C. Lin, H.C. Li, S.S. Liou, M.T. Shie, Mechanism of plastic deformation of powder Metallurgy metal matrix composites of Cu-Sn/SiC and 6061/SiC under compressive stress, Mater. Sci. Eng. A, 373 (2004) 363-369.

DOI: 10.1016/j.msea.2004.02.011

Google Scholar

[5] B. Ogel, R. Gurbuz, Microstructural characterization and tensile properties of hot pressed Al-SiC composites prepared from pure Al and Cu powders, Mater. Sci. Eng. A, 301 (2001) 213-220.

DOI: 10.1016/s0921-5093(00)01656-7

Google Scholar

[6] J.C. Lee, J.P. Ahn, J.H. Shim, Z. Shi, H.I. Lee, Control of the interface in SiC/Al composites. Scr. Mater. 41 (1999) 895-900.

DOI: 10.1016/s1359-6462(99)00227-4

Google Scholar

[7] A. Ngeekoh, V. Thongnoppakoon, A. Changlor, T. Jindangam, N. Phongreed, T. Patcharawit, N. Chuankrerkkul, Microstructure and phase analysis of precipitation hardened silicon carbide particulate-reinforced aluminium composite fabricated by PIM, the 41st Congress on Science and Technology of Thailand (STT41) Nakhon Ratchasima, Thailand (2014).

Google Scholar

[8] G.B. Schaffer, B.J. Hall, S.J. Bonner, S.H. Huo, T.B. Sercombe, The effect of the atmosphere and the role of pore filling on the sintering of aluminium. Acta Mater. 54 (2006) 131-138.

DOI: 10.1016/j.actamat.2005.08.032

Google Scholar

[9] J.M. Martín, F. Castro, Liquid phase sintering of P/M aluminium alloys: effect of processing conditions, J. of Mater. Proc. Tech. 143-144 (2003) 814-821.

DOI: 10.1016/s0924-0136(03)00335-2

Google Scholar

[10] P. Jin, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, Y. Liu, S. Li, Effect of solution temperature on aging behavior and properties of SiCp/AlCuMg composites, Mater. Sci. Eng. A, 528 (2011) 1504-1511.

DOI: 10.1016/j.msea.2010.10.075

Google Scholar

[11] B.M. Gable, A.W. Zhu, G.J. Shiflet, E.A. Starke Jr., Assessment of the aluminum-rich corner of the Al–Cu–Mg–(Ag) phase diagram, CALPHAD 32 (2008) 256–267.

DOI: 10.1016/j.calphad.2007.08.003

Google Scholar

[12] J. Roy, S. Chandra, S. Das, S. Maitra, Oxidation behaviour of silicon carbide-a review. Rev. Adv. Mater. Sci. 38 (2014) 29-39.

Google Scholar

[13] A. Ureña, E.E. Martínez, P. Rodrigo, L. Gil, Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites, Compo. Sci. Tech. 64 (2004) 1843-1854.

DOI: 10.1016/j.compscitech.2004.01.010

Google Scholar

[14] M. Rodríguez-Reyes, M.I. Pech-Canul, J.C. Rendón-Angeles, J. López-Cuevas, Limiting the development of Al4C3 to prevent degradation of Al/SiCp composites processed by pressureless infiltration, Compo. Sci. and Tech. 66 (2006) 1056-1062.

DOI: 10.1016/j.compscitech.2005.07.025

Google Scholar

[15] T. Sritharan, L.S. Chan, L.K. Tan, N.P. Hung, A feature of the reaction between Al and SiC particles in an MMC, Mater. Charac, 47 (2001) 75-77.

DOI: 10.1016/s1044-5803(01)00144-9

Google Scholar

[16] D. Hull, T.W. Clyne, An introduction to composite materials, second ed. Cambridge Solid State Science Series, Cambridge University Press, 1996.

Google Scholar

[17] A. Kimura, M. Shibata, M. Katayama, T. Kanie, H. Takada, Reduction mechanism of surface oxide in aluminium alloy powders containing magnesium studied by X-ray photoelectron spectroscopy using synchrotron radiation, Appl. Phys. Lett., 70 (1997).

DOI: 10.1063/1.119250

Google Scholar

[18] S. Zhongliang, G. Mingyuan, L. Junyou, L. Guoquan, L. Jae-chul, Z. Di, W. Renjie, Interfacial reaction between the oxidized SiC particles and Al-Mg alloys, Chin. Sci. Bull. 46 (2001)1984-(1952).

Google Scholar

[19] T.W. Kim, Determination of densification behavior of Al-SiC metal matrix composites during consolidation processes, Mater. Sci. Eng. A, 483-484 (2008) 648-651.

DOI: 10.1016/j.msea.2006.09.175

Google Scholar

[20] J. Asensio-Lozano, B. Suárez-Peña, G.F.V. Voort, Effect of processing steps on the mechanical properties and surface appearance of 6063 aluminium extruded products. Mater. 7 (2014) 4224-4242.

DOI: 10.3390/ma7064224

Google Scholar

[21] J. Hashim, L. Looney, M.S.J. Hashmi, The wettability of SiC particles by molten aluminium alloy, J. Mater. Proc. Tech. 119 (2001) 324-328.

DOI: 10.1016/s0924-0136(01)00975-x

Google Scholar

[22] T. Udomphol, R. Buntan, M. Boonma, The fabrication of aluminium composites via stir-mixed and particulate injection casting, Adv. Sci. Lett. 12 (2012) 223–229.

DOI: 10.1166/asl.2012.2751

Google Scholar

[23] R.M. German, Powder metallurgy and particulate materials processing, Metal Powder Industries Federation. (2005).

Google Scholar

[24] T. Fan, Z. Shi, D. Zhang, R. Wu, The interfacial reaction characteristics in SiC/Al composite above liquidus during remelting, Mater. Sci. Eng. A, 257 (1998) 281-286.

DOI: 10.1016/s0921-5093(98)00855-7

Google Scholar

[25] I.A. MacAskill, R.L. Hexemer-Jr, I.W. Donaldson, D.P. Bishop, Effects of magnesium, tin and nitrogen on the sintering response of aluminum powder, J. Mater. Proc. Tech. 210 (2010) 2252-2260.

DOI: 10.1016/j.jmatprotec.2010.08.018

Google Scholar

[26] E. Füglein, U. Schubert, Formation of Mg2Si from solid silicon monoxide, and solid-sate comproportionation between Mg2Si and SiO. Chem. Mater, 11 (1999) 865-866.

DOI: 10.1021/cm980775v

Google Scholar

[27] R.H. Beton, E.C. Rollason, J. Inst. Metals, 86 (1957-1958) 77.

Google Scholar

[28] L. Löchte, A. Gitt, G. Gottstein, I. Hurtado, Simulation of the evolution of GP zones in Al–Cu alloys: an extended Cahn–Hilliard approach, Acta Mater. 48 (2000) 2969-2984.

DOI: 10.1016/s1359-6454(00)00073-2

Google Scholar

[29] H.K. Hardy, The ageing characteristics of ternary aluminium-copper alloys with cadmium indium or tin. 80 (1951–52) 483–492.

Google Scholar

[30] B.G. Kim, S.L. Dong, S.D. Park, Effects of thermal processing on thermal expansion coefficient of a 50 vol. % SiCp/Al composite, Mater. Chem. Phys. 72 (2001) 42-47.

DOI: 10.1016/s0254-0584(01)00306-6

Google Scholar

[31] N. Chawla, Y.L. Shen, Mechanical behavior of particle reinforced metal matrix composites, Adv. Eng. Mater. 3 (2001) 357-370.

DOI: 10.1002/1527-2648(200106)3:6<357::aid-adem357>3.0.co;2-i

Google Scholar

[32] A. Slipenyuk, V. Kuprin, Milman, V.Y. Goncharuk, J. Eckert, Properties of P/M processed particle reinforced metal matrix composites specified by reinforcement concentration and matrix-to-reinforcement particle size ratio, Acta Mater. 54 (2006).

DOI: 10.1016/j.actamat.2005.08.036

Google Scholar

[33] T. Udomphol, B. Inpanya, N. Chuankrerkkul, Characterization of feedstocks for injection molded SiCp-reinforced Al-4. 5 wt. %Cu composite, Adv. Mater. Res. 383-390 (2012) 3234-3240.

DOI: 10.4028/www.scientific.net/amr.383-390.3234

Google Scholar