Effect of M-Type Hexaferrites on Mechanical and Magnetic Properties of Hydroxyapatite Ceramics

Article Preview

Abstract:

The overall aim of this study is to establish the inter-relationships between phase formations, mechanical properties and magnetic properties of the novel ceramic in hydroxyapatite system for biomaterial applications. First, barium hexaferrite and strontium hexaferrite powders were prepared as M-type hexaferrite phases. Hydroxyapatite was prepared from cockle shells via co-precipitation method. After that, a combination between hydroxyapatite+barium hexaferrite and hydroxyapatite+strontium hexaferrite was mixed together then shaping and sintering at 1200 °C for 2 h. The sintered samples were characterized phase formation, mechanical and magnetic properties by using X-ray diffraction (XRD), Universal testing and VSM measurements, respectively. XRD patterns for all samples showed a combination between hydroxyapatite and hexaferrite phases. Compressive strength of all samples tends to increase with increasing of the amount of hexaferrite phases due to densification mechanism. However, the increasing of these values, it appears that there is no difference in the statistical significant. For magnetic properties, the coexistence of barium hexaferrite and strontium hexaferrite phases reveals magnetic hysteresis loops, showing the change from diamagnetic to ferromagnetic behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

611-616

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.C. Palmer, C.J. Newcomb, S.R. Kaltz, E.D. Spoerke, S.I. Stupp, Biomimetic systems for hydroxyapatite mineralization inspired by bone and enamel, Chem. Rev. 108 (2008) 4754-4783.

DOI: 10.1021/cr8004422

Google Scholar

[2] T. Cordonnier, J. Sohier, P. Rosset, P. Layrolle, Biomimetic materials for bone tissue engineering - state of the art and future trends, Adv. Eng. Mater. 13 (2011) B135-B150.

DOI: 10.1002/adem.201080098

Google Scholar

[3] S.C. Manolagas, Birth and Death of Bone Cells: Basic Regulatory Mechanisms and Implications for the Pathogenesis and Treatment of Osteoporosis, Endocr. ReV. 21 (2000) 115-137.

DOI: 10.1210/edrv.21.2.0395

Google Scholar

[4] A. J. Salgado, O.P. Coutinho, R.L. Reis, Bone tissue engineering: state of the art and future trends, Macromol. Biosci. 4 (2004) 743-765.

DOI: 10.1002/mabi.200400026

Google Scholar

[5] H. Yoshikawa, A. Myoui, Bone tissue engineering with porous hydroxyapatite ceramics, J. Artif. Organs, 8 (2005) 131-136.

DOI: 10.1007/s10047-005-0292-1

Google Scholar

[6] S.B. Kim, Y.J. Kim, T.L. Yoon, S.A. Park, I.H. Cho, E.J. Kim, I. Kim, J. -W. Shin, The characteristics of a hydroxyapatite–chitosan–PMMA bone cement, Biomaterials, 25 (2004) 5715-5723.

DOI: 10.1016/j.biomaterials.2004.01.022

Google Scholar

[7] S.S. Kim, M. Sun Park, O. Jeon, C. Yong Choi, B.S. Kim, Poly (lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering, Biomaterials, 27 (2006) 1399-1409.

DOI: 10.1016/j.biomaterials.2005.08.016

Google Scholar

[8] X. -Y. Ma, Y. -F. Feng, Z. -S. Ma, X. Li, J. Wang, L. Wang, W. Lei, The promotion of osteointegration under diabetic conditions using chitosan/hydroxyapatite composite coating on porous titanium surfaces, Biomaterials, 35 (2014) 7259-7270.

DOI: 10.1016/j.biomaterials.2014.05.028

Google Scholar

[9] M.P. Ferraz, F.J. Monteiro, C.M. Manuel, Hydroxyapatite nanoparticles: A review of preparation methodologies, J. Appl. Biomater Biomech, JABB. 2 (2004) 74-80.

Google Scholar

[10] E. Bouyer, F. Gitzhofer, M.I. Boulos, Morphological study of hydroxyapatite nanocrystal suspension, J. Mater. Sci.: Materials in Medicine, 11 (2000) 523-531.

Google Scholar

[11] A. Tampieri, T. Alessandro, M. Sandri, S. Sprio, E. Landi, L. Bertinetti, S. Panseri, G. Pepponi, J. Goettlicher, M.B. Lopez, J. Rivas, Intrinsic magnetism and hyperthermia in bioactive Fe-doped hydroxypatite, Acta Biomater, 8 (2012) 843-851.

DOI: 10.1016/j.actbio.2011.09.032

Google Scholar

[12] L. Wang, K.G. Neoh, E.T. Kang, B. Shuter, S.C. Wang, Biodegradable magnetic-fluorescent magnetite/poly (DL-lactic acid-co-α, β-malic acid) composite nanapaticles for stem cell labeling, Biomaterials, 31 (2010) 3502-3511.

DOI: 10.1016/j.biomaterials.2010.01.081

Google Scholar

[13] T. Kikuchi, T. Nakamura, T. Yamasaki, M. Nakanishi, T. Fujii, J. Takada, Y. Ikeda, Magnetic properties of La–Co substituted M-type strontium hexaferrites prepared by polymerizable complex method, J. Magn. Magn. Mater. 322 (2010) 2381-2385.

DOI: 10.1016/j.jmmm.2010.02.041

Google Scholar

[14] A. Goldman, Modern Ferrite Technology, II, Springer Science Inc., USA, 2006, p.63.

Google Scholar

[15] D.E. Speliotis, High density recording on particulate and thin film rigid disks, IEEE Trans. Magn. 25 (1989) 4048-4050.

DOI: 10.1109/20.42518

Google Scholar

[16] G. Ciobanu, A.M. Bargan, C. Luca, New cerium(IV)-substituted hydroxyapatite nanoparticles: Preparation and characterization, Ceram. Intl. 41 (2015) 12192-12201.

DOI: 10.1016/j.ceramint.2015.06.040

Google Scholar

[17] N. Lertcumfu, P. Jarupoom, G. Rujijanagul, Fabrication and properties of tricalcium phosphate/barium hexaferrite composites, Ceram. Intl. 39 (2013) S373-S377.

DOI: 10.1016/j.ceramint.2012.10.097

Google Scholar

[18] A. Inukai, N. Sakamoto, H. Aono, O. Sakurai, K. Shinozaki, H. Suzuki, N. Wakiya, Synthesis and hyperthermia property of hydroxyapatite-ferrite hybrid particles by ultrasonic spray pyrolysis, J. Magn. Magn. Mater. 327 (2011) 965-969.

DOI: 10.1016/j.jmmm.2010.11.080

Google Scholar

[19] N. Tran, T.J. Webster, Increased osteoblast functions in the presence of hydroxyapatite-coated iron oxide nanoparticles, Acta Biomater. 7 (2011) 1298-1306.

DOI: 10.1016/j.actbio.2010.10.004

Google Scholar