PMMA Demonstrated Higher Elastic Modulus and Nanohardness Compared with Polyamide Denture Base Materials

Article Preview

Abstract:

The elastic modulus and nanohardness of denture bases may be different based on the type of material. The purpose of this study was to compare the elastic modulus and nanohardness of polyamide and polymethyl methacrylate (PMMA) denture base materials. Three polyamide denture base materials (Valplast, Lucitone FRS, and Thermoplastic Comfort System (TCS)) and one Polymethyl methacrylate (PMMA,Triplex Hot) denture base material (n=10) were evaluated to compare their elastic modulus and nanohardness values using an ultramicroindentation system (UMIS 2000; CSIRO, Lindfield, Australia). The data were statistically analyzed using one-way ANOVA, followed by Tukey HSD and Tamhane’s post hoc tests (α=.05). The elastic modulus and nanohardness of PMMA were significantly higher compared to the polyamide groups (P<.05). All the materials showed significant differences in each of their elastic modulus and nanohardness (P<.05). The values of nanohardness and elastic modulus of each group were as follows: Triplex Hot > Lucitone FRS > Valplast > TCS. The elastic modulus and nanohardness values varied among the polyamide denture base materials. PMMA showed higher elastic modulus and nanohardness than the polyamide. A strong positive correlation existed between elastic modulus and nanohardness of the denture bases tested (R2 = 0.979, P<.05).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

643-648

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Hamanaka, Y. Takahashi, H. Shimizu, Mechanical properties of injection-molded thermoplastic denture base resins, Acta Odontol Scand. 69 (2011) 75-9.

DOI: 10.3109/00016357.2010.517557

Google Scholar

[2] H. Rashid, Z. Sheikh, F. Vohra, Allergic effects of the residual monomer used in denture base acrylic resins, Eur J Dent. 9 (2015) 614-9.

DOI: 10.4103/1305-7456.172621

Google Scholar

[3] G.D. Stafford, R. Huggett, A.R. MacGregor, J. Graham, The use of nylon as a denture-base material, J Dent. 14 (1986) 18-22.

DOI: 10.1016/0300-5712(86)90097-7

Google Scholar

[4] L. Ardelean, C. Bortun, A. Podariu, A. Rusu, Manufacture of different types of thermoplastic, in: A.Z. El-Sonbati (Ed. ), Thermoplastic – composite materials, Intech, Croatia, 2012, pp.25-9.

DOI: 10.5772/35530

Google Scholar

[5] Y. Takabayashi, Characteristics of denture thermoplastic resins for non-metal clasp dentures, Dent Mater J. 29 (2010) 353-61.

DOI: 10.4012/dmj.2009-114

Google Scholar

[6] Y. Ucar, T. Akova, I. Aysan, Mechanical properties of polyamide versus different PMMA denture base materials, J Prosthodont. 21 (2012) 173-6.

DOI: 10.1111/j.1532-849x.2011.00804.x

Google Scholar

[7] J. Shah, N. Bulbule, S. Kulkarni, R. Shah, D. Kakade, Comparative evaluation of sorption, solubility and microhardness of heat cure polymethyl methacrylate denture base resin & flexible denture base resin, J Clin Diagn Res. 8 (2014) 1-4.

DOI: 10.7860/jcdr/2014/8707.4770

Google Scholar

[8] Y. Katsumata, S. Hojo, N. Hamano, T. Watanabe, H. Yamaguchi, S. Okada, et al., Bonding strength of autopolymerizing resin to nylon denture base polymer, Dent Mater J. 28 (2009) 409-18.

DOI: 10.4012/dmj.28.409

Google Scholar

[9] I. Hamanaka, M. Iwamoto, L.V. Lassila, P.K. Vallittu, H. Shimizu, Y. Takahashi, Influence of water sorption on mechanical properties of injection-molded thermoplastic denture base resins, Acta Odontol Scand. 72 (2014) 859-65.

DOI: 10.3109/00016357.2014.919662

Google Scholar

[10] I. Hamanaka, M. Iwamoto, L.V. Lassila, P.K. Vallittu, H. Shimizu, Y. Takahashi, The effect of cycling deflection on the injection-molded thermoplastic denture base resins, Acta Odontol Scand. 74 (2016) 67-72.

DOI: 10.3109/00016357.2015.1042039

Google Scholar

[11] The glossary of prosthodontic terms, J Prosthet Dent. 94 (2005) 34.

Google Scholar

[12] T. Phunthikaphadr, H. Takahashi, M. Arksornnukit, Pressure transmission and distribution under impact load using artificial denture teeth made of different materials, J Prosthet Dent. 102 (2009) 319-27.

DOI: 10.1016/s0022-3913(09)60183-9

Google Scholar

[13] K.J. Anusavice, C. Shen, H.R. Rawls, Phillip's science of dental materials, twelveth ed., Saunders, St. Louis, (2013).

Google Scholar

[14] J.F. McCabe, B.H. Smith, A method for measuring the wear of restorative materials in vitro, Br Dent J. 151 (1981) 123-6.

DOI: 10.1038/sj.bdj.4804649

Google Scholar

[15] P. Suwannaroop, P. Chaijareenont, N. Koottathape, H. Takahashi, M. Arksornnukit, In vitro wear resistance, hardness and elastic modulus of artificial denture teeth, Dent Mater J. 30 (2011) 461-8.

DOI: 10.4012/dmj.2010-200

Google Scholar

[16] I. Hamanaka, M. Iwamoto, L.V. Lassila, P.K. Vallittu, Y. Takahashi, Wear resistance of injection-molded thermoplastic denture base resins, Acta Biomater Odontol Scand. 31 (2016) 31-37.

DOI: 10.3109/23337931.2015.1135747

Google Scholar

[17] Valplast Safety Data Sheet, Valplast International Corp. Westbury, NY. (2015).

Google Scholar

[18] Lucitone FRS Technique Highlight Sheet, DENTSPLY International, Inc. York, PA. (2013).

Google Scholar

[19] Instructions for Injecting TCS Unbreakable Cartridges, TCS, Inc. Signal Hill, CA. (2015).

Google Scholar

[20] SR Triplex Hot Instructions for Use, Ivoclar Vivadent AG. Schaan, Liechtenstein. (2016).

Google Scholar

[21] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J Mater Res. 7 (1992) 1564-83.

DOI: 10.1557/jmr.1992.1564

Google Scholar

[22] N. Sato, T. Kurauchi, S Sato, O. Kamigaito, Mechanism of fracture of short glass fibre-reinforced polyamide thermoplastic, J Mater Sci. 19 (1984) 1145-52.

DOI: 10.1007/bf01120023

Google Scholar

[23] K. Machida, H. Yamada, Evaluation of mixed-mode stress intensity factor by digital image correlation and intelligent hybrid method, Int J Comput Elec Autom Control Inform Eng. 1 (2007) 11-16.

Google Scholar

[24] Suzuki S, Nakabayashi N, Masuhara E, The evaluation of new dental resins prepared with polyfunctional mathacrylate monomers, J Biomed Mater Res. 16 (1982) 275-287.

DOI: 10.1002/jbm.820160308

Google Scholar

[25] E. Santos Jr, K.D.P. Nascimento, S.S. Camargo Jr, Relation between in-vitro wear and nanomechanical properties of commercial light-cured dental composites coated with surface sealants, Mater Res. 16 (2013) 1148-1155.

DOI: 10.1590/s1516-14392013005000097

Google Scholar

[26] D. Tranchida, S. Piccarolo, J. Loos, A. Alexeev, Mechanical characterization of polymers on a nanometer scale through nanoindentation: A study on pile-up and viscoelasticity, Macromolecules. 40 (2007) 1259-67.

DOI: 10.1021/ma062140k

Google Scholar