[1]
Information on http: /www. thaiplastics. org/content_attachment/attach/1468318180. 21-41.
Google Scholar
[2]
Information on http: /medicaldevices. oie. go. th/box/downdoad/2016/F15.
Google Scholar
[3]
I.A. Major, Pulp-dentin biology in restorative dentistry. Part 7: the exposed pulp, Quintessence Int. 33(2002) 113-114.
Google Scholar
[4]
R. Weiner, Liners and bases in general dentistry, Aust. Dent. J. 56 (2011) 11–22.
Google Scholar
[5]
R. Weiner, Liners, bases, and cements: an in-depth review, Part 3, Dent Today. 27(2008) 65-66.
Google Scholar
[6]
International Organization for Standardization, ISO 9917-2: 2010(E). Dentistry-Water-based cements Part 2: resin-modified cements, second edition, ISO; (2010).
Google Scholar
[7]
J. Chokboribal, W. Tachaboonyakiat, P. Sangvanich, V. Ruangpornvisuti, S. Jettanacheawchankit, P. Thunyakitpisal, Deacetylation affects the physical properties and bioactivity of acemannan, an extracted polysaccharide from Aloe vera, Carbohydr. Polym. 133 (2015).
DOI: 10.1016/j.carbpol.2015.07.039
Google Scholar
[8]
A. Dell Bona, K.J. Anusavice, P.H. DeHoff, Weibull analysis and flexural strength of hot-pressed core and veneered ceramic structures, Dent. Mater. 19(2003) 662-669.
DOI: 10.1016/s0109-5641(03)00010-1
Google Scholar
[9]
S.A. Rodrigues, J.L. Ferracane, A. Della Bona, Flexural strength and Weibull analysis of a microhybrid and a nanofill composite evaluated by 3- and 4-point bending tests, Dent. Mater. 43(2008) 426-431.
DOI: 10.1016/j.dental.2007.05.013
Google Scholar
[10]
N. Kong, T. Jiang, Z. Zhou, J. Fu, Cytotoxicity of polymerized resin cements on human dental pulp cells in vitro, Dent. Mater. 25(2009) 1371–1375.
DOI: 10.1016/j.dental.2009.06.008
Google Scholar
[11]
J.W. Nicholson, B. Czarnecka, The biocompatibility of resin-modified glass-ionomer cements for dentistry, Dent. Mater. 24(2008) 1702-1708.
DOI: 10.1016/j.dental.2008.04.005
Google Scholar
[12]
R.I. Freshney, Introduction: Advantage of tissue culture, in: R.I. Freshney (Eds), Culture of animal cells: A manual of basic technique, fifth ed., John Wiley & Sons, Inc., New Jersey, 2005, pp.6-8.
DOI: 10.1002/0471747599.cac001
Google Scholar
[13]
A. Furey, J. Hjelmhaug, D. Lobner, Flow Line, Durafill VS, and Dycal toxicity to dental pulp cells: effects of growth factors, J. Endod. 36(2010) 1149-1153.
DOI: 10.1016/j.joen.2010.03.013
Google Scholar
[14]
A.S. Wadajkar, C. Ahn, K.T. Nguyen, Q. Zhu, T. Komabayashi, In Vitro Cytotoxicity evaluation of four vital pulp therapy materials on L929 fibroblasts, ISRN Dent. 2014(2014) 191068-191072.
DOI: 10.1155/2014/191068
Google Scholar
[15]
P. Murray, P.J. Lumley, H.F. Ross, A.J. Smith, Tooth slice organ culture for cytotoxicity assessment of dental materials, Biomaterial. 21(2000) 1711-1721.
DOI: 10.1016/s0142-9612(00)00056-9
Google Scholar
[16]
J.C. Wataha, Biocompactibility of dental materials: Measuring the biocompatibility of material, in: K.J. Ausavice (Eds), Phillips' Science of Dental Materials, eleventh ed., Elsevier, New Delhi, 2003, pp.188-190.
Google Scholar
[17]
J. Hebling, F.C. Lessa, I. Nogueira, R.M. Carvalho, C.A. Costa, Cytotoxicity of resin-based light-cured liners, Am. J. Dent. 22(2009) 137-142.
Google Scholar
[18]
E.A. Bortoluzzi, L.N. Niu, C.D. Palani, A.R. El-Awady, B.D. Hammond, D.D. Pei, F.C. Tian, C.W. Cutler, D.H. Pashley, F.R. Tay, Cytotoxicity and osteogenic potential of silicate calcium cements as potential protective materials for pulpal revascularization, Dent. Mater. 31(2015).
DOI: 10.1016/j.dental.2015.09.020
Google Scholar
[19]
W.R. Hirschman, M.A. Wheater, J.S. Bringas, M.M. Hoen, Cytotoxicity comparison of three current direct pulp-capping agents with a new bioceramic root repair putty, J. Endod. 38(2012) 385-388.
DOI: 10.1016/j.joen.2011.11.012
Google Scholar
[20]
E.C. Munksgaard, M. Freund, Enzymatic hydrolysis of (di)methacrylates and their polymers, Scand. J. Dent. Res. 98(1990) 261–267.
DOI: 10.1111/j.1600-0722.1990.tb00971.x
Google Scholar
[21]
W. Geurtsen, W. Spahl, G. Leyhausen, Residual monomer/additive release and variability in cytotoxicity of light-curing glass-ionomer cements and compomers, J. Dent. Res. 77(1998) 2012–(2019).
DOI: 10.1177/00220345980770121001
Google Scholar
[22]
M. Kaga, M. Noda, J.L. Ferracane, W. Nakamura, H. Oguchi, H. Sano, The in vitro cytotoxicity of eluates from dentin bonding resins and their effect on tyrosine phosphorylation of L929 cells, Dent. Mater. 17(2001) 333–339.
DOI: 10.1016/s0109-5641(00)00091-9
Google Scholar
[23]
A.D. Wilson, Resin-modified glass-ionomer cements, Int. J. Prosthod. 3(1990) 215-219.
Google Scholar
[24]
S. Furche, R. Hickel, F.X. Reichl, K. van Landuyt, M. Shehata, J. Durner, Quantification of elutable substances from methacrylate based sealers and their cytotoxicity effect on with human gingival fibroblasts, Dent. Mater. 29(2013) 618-625.
DOI: 10.1016/j.dental.2013.03.009
Google Scholar