[1]
E.C. Ilinoiu, R. Pode, F. Manea, L.A. Colar, A. Jakab, C. Orha, C. Ratiu, C. Lazau, P. Sfarloaga, Photocatalytic activity of nitrogen-doped TiO2 modified zeolite in the degradation of Reactive Yellow 125 azo dye, J. Taiwan Inst. Chem. E. 44 (2013).
DOI: 10.1016/j.jtice.2012.09.006
Google Scholar
[2]
K. Li, J. Xiong, T. Chen, L. Yan, Y. Dai, D. Song, Y. Lv, Z. Zeng, Preparation of graphene TiO2 composites by nonionic surfactant strategy and their simulated sunlight and visible light photocatalytic activity towards representative aqueous POPs degradation, J. Hazard. Mater. 250-251 (2013).
DOI: 10.1016/j.jhazmat.2013.01.069
Google Scholar
[3]
H. Wang, H.L. Wang, W.F. Jiang, Z.Q. Li, Photocatalytic degradation of 2, 4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation, Water Res. 43 (2009) 204-210.
DOI: 10.1016/j.watres.2008.10.003
Google Scholar
[4]
C. Sriwong, S. Wongnawa, O. Patarapaiboolchai, Photocatalytic activity of rubber sheet impregnated with TiO2 particles and its recyclability, Catal. Commun. 9 (2008) 213-218.
DOI: 10.1016/j.catcom.2007.05.037
Google Scholar
[5]
S. Singh, H. Mahalingam, P.K. Singh, Polymer-supported titanium dioxide photocatalysts for environmental remediation: A review, Appl. Catal., A. 462-463 (2013) 178-195.
DOI: 10.1016/j.apcata.2013.04.039
Google Scholar
[6]
C. Sriwong, S. Wongnawa, O. Patarapaiboolchai, Recyclable thin TiO2-embedded rubber sheet and dye degradation, Chem. Eng. J. 191 (2012) 210-217.
DOI: 10.1016/j.cej.2012.03.005
Google Scholar
[7]
S. Liu, H. Sun, S. Liu, S. Wang, Graphene facilitated visible light Photodegradation of methylene blue over titanium dioxide photocatalysts, Chem. Eng. J. 214 (2013) 298-303.
DOI: 10.1016/j.cej.2012.10.058
Google Scholar
[8]
M. Shi, J. Shen, H. Ma, Z. Li, X. Lu, N. Li, M. Ye, Preparation of graphene-TiO2 composite by hydrothermal method from peroxotitanium acid and it photocatalytic properties, Colloids Surf., A. 405 (2012) 30-37.
DOI: 10.1016/j.colsurfa.2012.04.031
Google Scholar
[9]
P.K. Dubey, P. Tripathi, R.S. Tiwari, A.S.K. Sinha, O.N. Srivastava, Synthesis of reduced graphene oxide-TiO2 nanoparticle composite systems and its application in hydrogen production, Int. J. Hydrogen Energy. 39 (2014) 16282-16292.
DOI: 10.1016/j.ijhydene.2014.03.104
Google Scholar
[10]
R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles, Optik. 127 (2016) 7143-7154.
DOI: 10.1016/j.ijleo.2016.04.026
Google Scholar
[11]
C. Nethravathi, M. Rajamathi, Chemical modified graphene sheets produced by thee solvothermal reduction of colloidal dispersions of graphite oxide, Carbon. 46 (2008) 1994-(1998).
DOI: 10.1016/j.carbon.2008.08.013
Google Scholar
[12]
D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, Process able aqueous dispersions of graphene nanosheets, Net. Nanotechnol. 3 (2008) 101-105.
Google Scholar
[13]
X. Luan, Y. Wang, Enhanced photocatalytic activity of graphene oxide-titania nanosheets composite for methylene blue degradation, Mater. Sci. Semicond. Process. 30 (2015) 592-598.
DOI: 10.1016/j.mssp.2014.10.032
Google Scholar