[1]
C. -W. Huang, et al, A low cost color-based bacterial biosensor for measuring arsenic in ground water, Journal of Chemosphere. 141 (2015) 44-49.
DOI: 10.1016/j.chemosphere.2015.06.011
Google Scholar
[2]
C. Hu, et al, Coagulation of methylated arsenic from drinking water: Influence of methyl substitution, Journal of Hazardous Materials. 293 (2015) 97-104.
DOI: 10.1016/j.jhazmat.2015.03.055
Google Scholar
[3]
L. E. LeMire, et al, Removal of As(V) using an iron-impregnated ion exchange bead, Journal of Separation Science and Technology. 45 (2010) 2051-(2063).
DOI: 10.1080/01496395.2010.504433
Google Scholar
[4]
J. Ji, et al, Preparation and arsenic adsorption assessment of PPESK ultrafiltration membranes with organic/inorganic additives, Journal of Applied surface Science. 351 (2015) 715-724.
DOI: 10.1016/j.apsusc.2015.05.183
Google Scholar
[5]
S. V. Jadhav, et al, Arsenic and Fluoride contaminated groundwaters: A review of current technologies for contaminants removal, Journal of Environmental Management. 162 (2015) 306-325.
DOI: 10.1016/j.jenvman.2015.07.020
Google Scholar
[6]
D. Mohan, et al, Organic and inorganic contaminants from water with biochar, a renewable, low cost and sustainable adsorbents-A critical review, Journal of Biosensor Technology. 160 (2014) 191-202.
DOI: 10.1016/j.biortech.2014.01.120
Google Scholar
[7]
V. Rodriguez, et al, Arsenic removal by modified activated carbons with iron hydro(oxide) nanoparticles, Journal of Environmental Management. 114 (2013) 225-231.
DOI: 10.1016/j.jenvman.2012.10.004
Google Scholar
[8]
N. Deedar., et al, Evaluation of the adsorption potential of titanium dioxide nanoparticles for arsenic removal, Journal of Environmental Management. 21 (2009) 402-408.
Google Scholar
[9]
N. Singh., et al, A process for the selective removal of arsenic from contaminated water using acetate functionalized zinc oxide nanomaterials, Journal of Environmental Progress & Sustainable Energy. 32 (2012) 1-7.
DOI: 10.1002/ep.11698
Google Scholar
[10]
P. Sylvester., et al, Hybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenic removal from drinking water , Journal of Environmental Engineering Science . 24 (2007) 104-112.
DOI: 10.1089/ees.2007.24.104
Google Scholar
[11]
D. Morillo, et al, Efficient arsenic(V) and arsenic(III) removal from acidic solutions with Novel Forager Sponge-loaded superparamagnetic iron oxide nanoparticles, Journal of Colloid and Interface Science. 453 (2015) 132-141.
DOI: 10.1016/j.jcis.2015.04.048
Google Scholar
[12]
P. Lodeiro., et al, Novel Fe loaded activated carbons with tailored properties for As(V) removal: adsorption study correlated with carbon surface chemistry, Journal of Chemical Engineering. 215-216 (2013) 105-113.
DOI: 10.1016/j.cej.2012.11.052
Google Scholar
[13]
P. Chutia., et al, Adsorption of As(V) on surfactant modified natural zeolites, Journal of Hazadous Materials. 162 (2009) 204-211.
Google Scholar
[14]
C. Gerente., et al, Removal of As(V) onto chitosan: from sorption mechanism explanation to dynamic water treatment process, Journal of Chemical Engineering. 158 (2010) 593-598.
DOI: 10.1016/j.cej.2010.02.005
Google Scholar
[15]
A. Goswami., et al, Arsenic adsorption using copper(II) oxides nanoparticles, Journal of Chemical Engineering Research and Design. 90 (2012) 1387-1396.
DOI: 10.1016/j.cherd.2011.12.006
Google Scholar
[16]
X. Meng, and G. P. Korfiatis., Removal of arsenic from Bangladesh well water using a household filtration system, Journal of BUETUNU International Workshop on Technologies for Arsenic Removal from Drinking Water . (2001) 121-129.
DOI: 10.1016/s0043-1354(01)00007-0
Google Scholar
[17]
S. Thanawatpoontawee. A. Imyim, N. Praphairaksit., Iron-loaded zein beads as a biocompatible adsorbent for arsenic(V) removal, Journal of Industrial and Engineering Chemistry. 43 (2016) 127-132.
DOI: 10.1016/j.jiec.2016.07.058
Google Scholar
[18]
K. W. Kim., et al, Arsenic geochemistry of groundwater in Southeast Asia, Journal of Frontiers of Medicine. 5 (2011) 420-433.
Google Scholar