Properties of Alumina-Titania Coating Formed by a New Multi-Chamber Gas-Dynamic Accelerator

Article Preview

Abstract:

Thermal-sprayed alumina–titania coatings (Al2O3:Ti wt ratio = 60:40) were prepared by a new multi-chamber gas-dynamic accelerator. The coatings were examined by using scanning electron microscopy, X-ray phase analysis and Vickers hardness tester at a test load 0.2 kg. The coating was well-adhered with corrosion-resistant steel substrate. The results show that the microstructure of the alumina–titania coatings consists of areas with different degrees of melting: the lamella built up from the fully melted particles of the powder, and partially melted areas. The developed coating is highly dense (porosity is less than 0.7%). Research results show that hardness of alumina–titania coatings (Al2O3:Ti wt ratio = 60:40) can achieve up to 655 HV0.2 and the specific wear rate of alumina-titania coatings is 52.40∙10-5 mm3 (m∙N)-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

117-122

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Jiansirisomboon, K. J. D. MacKenzie, S. G. Roberts, P. S. Grant, Low pressure plasma-sprayed Al2O3 and Al2O3/SiC nanocomposite coatings from different feedstock powders, J. Eur. Ceram. Soc. 23(6) (2003) 961-976.

DOI: 10.1016/s0955-2219(02)00207-8

Google Scholar

[2] F. L. Toma, C. C. Stahr, L. M. Berger, S. Saaro, M. Herrmann, D. Deska, G. Michael, Corrosion resistance of APS- and HVOF-sprayed coatings in the Al2O3-TiO2 system, J. Therm. Spray Technol. 19(1-2) (2010) 137-147.

DOI: 10.1007/s11666-009-9422-2

Google Scholar

[3] J. Sure, A. Ravi Shankar, U. Kamachi Mudali, Surface modification of plasma sprayed Al2O3–40 wt% TiO2 coatings by pulsed Nd: YAG laser melting, Opt. Laser Technol. 48 (2013) 366-374.

DOI: 10.1016/j.optlastec.2012.09.025

Google Scholar

[4] J. Ilavsky, C. C. Berndt, H. Herman, P. Chraska, J. Dubsky, Alumina-base plasma-sprayed materials - Part I1: Phase transformations in aluminas, J. Therm. Spray Technol. 6(4) (1997) 439-444.

DOI: 10.1007/s11666-997-0028-2

Google Scholar

[5] E. Celik, E. Avci, Effect of grit-blasting of substrate on corrosion¸ behaviour of plasma-sprayed Al2O3 coatings, Surf. Coat. Technol. 116-119 (1999) 1061-1064.

DOI: 10.1016/s0257-8972(99)00238-8

Google Scholar

[6] P. K. Sapra, S. Singh, S. Prakash, Evaluation of detonation gun sprayed alumina titania coatings, Int. J. Surface Science and Engineering 2(5) (2008) 400–408.

DOI: 10.1504/ijsurfse.2008.021351

Google Scholar

[7] V. Fervel, B. Normand, C. Coddet, Tribological behavior of plasma sprayed Al2O3-based cermet coatings, Wear 230(1) (1999) 70-77.

DOI: 10.1016/s0043-1648(99)00096-4

Google Scholar

[8] V. Fervel, B. Normand, H. Liao, C. Coddet, E. Beche, R. Berjoan, Friction and wear mechanisms of thermally sprayed ceramic and cermet coatings, Surf. Coat. Technol. 111(2-3) (1999) 255-262.

DOI: 10.1016/s0257-8972(98)00822-6

Google Scholar

[9] B. Normand, V. Fervel, C. Coddet, V. Nikitine, Tribological properties of plasma sprayed alumina-titania coatings: role and control of the micro structure, Surf. Coat. Technol. 123(2-3) (2000) 278-285.

DOI: 10.1016/s0257-8972(99)00532-0

Google Scholar

[10] M. Harju, E. Levänen, T. Mäntylä, Wetting behaviour of plasma sprayed oxide coatings, Appl. Surf. Sci. 252(24) (2006) 8514-8520.

DOI: 10.1016/j.apsusc.2005.11.065

Google Scholar

[11] V. Ulianitsky, V. Shtertser, I. Smurov, Computer-controlled detonation spraying: from process fundamentals toward advanced applications, J. Therm. Spray Technol. 20(4) (2011) 791-801.

DOI: 10.1007/s11666-011-9649-6

Google Scholar

[12] D. V. Dudina, I. S. Batraev, V. Yu. Ulianitsky, M. A. Korchagin, G. V. Golubkova, S. Yu. Abramov, O. I. Lomovsky, Control of interfacial interaction during detonation spraying of Ti3SiC2–Cu composites, Inorg. Mater. 50(1) (2014) 35-39.

DOI: 10.1134/s0020168514010038

Google Scholar

[13] Yu. A. Nikolaev, A. A. Vasil'ev, V. Yu. Ulianitsky, Gas detonation and its application for technique and technologies, Combust. Explo. Shock. 39(4) (2003) 22-54.

Google Scholar

[14] Y. Liu, T. E. Fischer, A. Dent, Comparison of HVOF and plasma-sprayed alumina-titania coatings - microstructure, mechanical properties and abrasion behavior, Surf. Coat. Technol. 167 (2003) 68–76.

DOI: 10.1016/s0257-8972(02)00890-3

Google Scholar

[15] P. Tarkpea, Coatings as protective barriers in fluidized beds, Vaermeforsk Service AB, SE-101 53 Report No. SVF-656, Stockholm, Sweden, (1998).

Google Scholar

[16] B. M. Cetegen, Y. Sergey, G. D. Semenov, Deposition of multi-layered alumina–titania coatings by detonation waves, Scr. Mater. , 48 (2003) 1483–1488.

DOI: 10.1016/s1359-6462(03)00076-9

Google Scholar

[17] M. Kovaleva, M. Prozorova, M. Arseenko, Yu. Tyurin, O. Kolisnichenko, N. Vasilik, V. Sirota, I. Pavlenko, Deposition and characterization of alumina–titania coating by multi-chamber gas-dynamic sprayer, Results in Physics. 5 (2015) 1-2.

DOI: 10.1016/j.rinp.2014.12.003

Google Scholar

[18] M. Kovaleva, Y. Tyurin, N. Vasilik, O. Kolisnichenko, M. Prozorova, M. Arseenko, E. Danshina, Deposition and characterization of Al2O3 coatings by multi-chamber gas-dynamic accelerator, Surf. Coat. Technol. 232 (2013) 719-725.

DOI: 10.1016/j.surfcoat.2013.06.086

Google Scholar

[19] N. Vasilik, Yu. Tyurin, O. Kolisnichenko, RU Patent 2, 506, 341. (2012).

Google Scholar

[20] Standard Methods of Preparing Metallographic specimens, Annual Book of ASTM Standards, American Soc. for Metals, E-3-86 (1986).

Google Scholar

[21] G. J. Moskal, The porosity assessment of thermal barrier coatings obtained by APS method, J. Achiev. Mater. Manuf. 20(1-2) (2007) 483-486.

Google Scholar

[22] Standard test method for wear testing with a Pin-on-Disk apparatus, ASTM G99-05(2010), Book of ASTM Standards, American Soc. for Metals, Vol. 03. 02, 6 p, (2010).

Google Scholar

[23] W. Liu, T. Lu, Q. Chen, Y. Hu, S. Dun, I. Shlimak, Uniform fabrication of Ge nanocrystals embedded into SiO2 film via neutron transmutation doping, Prog. Nat. Sci. 24(3) (2014) 226-231.

DOI: 10.1016/j.pnsc.2014.04.005

Google Scholar

[24] M. U. Devi, New phase formation in Al2O3-based thermal spray coatings, Ceram. Int. 30(4) (2004) 555-565.

DOI: 10.1016/j.ceramint.2003.07.002

Google Scholar

[25] B. Normand, V. Fervel, C. Coddet, V. Nikitine, Tribological properties of plasma sprayed alumina–titania coatings: role and control of the microstructure, Surf. Coat. Technol. 123(2-3) (2000) 278-287.

DOI: 10.1016/s0257-8972(99)00532-0

Google Scholar

[26] P. V. Ananthapadmanabhan, T. K. Thiyagarajan, K. P. Sreekumar, R. U. Satpute, N. Venkatramani, K. Ramachandran, Co-spraying of alumina–titania: correlation of coating composition and properties with particle behaviour in the plasma jet, Surf. Coat. Technol. 168(2-3) (2003).

DOI: 10.1016/s0257-8972(03)00006-9

Google Scholar

[27] C. A. Berkath Ali Khan, C. Anil Kumar, P. M. Suresh, Tribological behavior of plasma sprayed Al2O3-TiO2 coating on Al-6082T6 substrate, Int. J. Innov. Res. Sci. Eng. Technol. 3(6) (2014) 13956-13963.

Google Scholar