Preparation of Telechelic Hydroxyl Low Molecular Weight Fluoropolymers

Article Preview

Abstract:

Preparation of telechelic hydroxyl low molecular weight fluoropolymers by reduction reaction was presented. The telechelic carboxyl low molecular weight fluoropolymers were chosen as raw materials which were prepared by oxidative degradation method. The molecular weights of telechelic carboxyl low molecular weight fluoropolymers were about 3700. Then, using lithium aluminum hydride reacted with carboxyl groups to prepare the telechelic hydroxyl low molecular weight fluoropolymers. The effects of reaction temperatures, reaction times, contents of solvent and lithium aluminum hydride were investigated in detail. The structures, Mn and dynamic viscosity of low molecular weight fluoropolymers were analyzed by FTIR, 1H-NMR, GPC and viscometer respectively. Finally telechelic hydroxyl low molecular weight fluoropolymers were prepared. The conversion rate of that reduction reaction was about 95%. The product was a viscous fluid with a dynamic viscosity of 48Pa·s at 50°C.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

93-98

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Calabrese, A. Alenza, The effect of a liquid rubber modifier on the thermo-kinetic parameters of an epoxy resin during a pultrusion process, Comp. Sci. Tech. 63 (2003) 851-860.

DOI: 10.1016/s0266-3538(02)00269-5

Google Scholar

[2] D. H. Li , S. C. Qi , X. A. Zhang, M. Y. Liao, Preparation, Functionalization and Properties of Low Molecular Fluoropolymers, Prog. Chem. 28 (2016) 676-685.

Google Scholar

[3] G. Caporiccio, G. Gornowicz, U. S. Patent 5, 395, 886. (1995).

Google Scholar

[4] G. Moggi, P. Bonardelli, G. Chiodini and S. Conti, U. S. Patent 4, 742, 126. (1988).

Google Scholar

[5] L. C. Chiang, J. T. Lin, H. Tatsu, L. M. Kogan, A. S. Skornyakov, T. Y. Zapevalova, O. V. Blagodatova and S. V. Sokolov, U. S. Patent 5, 986, 038. (1999).

Google Scholar

[6] W. D. Coggio, T. M. Dietz, D. R. Fronek, T. Fukushi, C. J. Nelson, D. S. Parker, T. D. Pham and K. K. Yamanaka, U. S. Patent 6, 080, 487. (2000).

Google Scholar

[7] W. D. Coggio, T. D. Pham, U. S. Patent 5, 733, 981. (1998).

Google Scholar

[8] M. V. Zhuravlev, O. V. Blagodatova, I. V. Kokotin, O. V. Barinov, N. V. Lebedev and V. A. Gubanov, R. U. Patent 2, 452, 746. (2012).

Google Scholar

[9] B. Ameduri, B. Boutevin,G. Kostov. Fluoroelastomers Synthesis, properties and applications, Prog. Polym. Sci. 26 (2001) 105-187.

Google Scholar

[10] E. F. Cluff, B. Hundred, U. S. Patent 3, 147, 314. (1964).

Google Scholar

[11] F. Mizuide, H. Tatsu, S. V. Sokolov, U. S. Patent 6, 329, 471. (2001).

Google Scholar

[12] J. Li, Y. F. Lu, W. T. You, L. L. Guo, C. Liu, X. A. Zhang, S. C. Qi, Synthesis, cure and properties of siloxy-terminatedliquid fluoroelastomers, Acta Polym. Sin. 11 (2013) 1430-1437.

Google Scholar

[13] J. Li, Y. F. Lu, Y. Liu, Y. Li, X. A. Zhang, S. C. Qi, Synthesis, characterization, curing and properties of carboxyl-terminated liquid fluoropolymers, Polym. Plast. Tech. Eng. 53 (2014) 46-53.

DOI: 10.1080/03602559.2013.843688

Google Scholar

[14] S. C. Qi, J. Li, Y. F. Lu, X. A. Zhang, J. D. Wang, Y. P. Li, Y. Li, S. L. Jiang and R. P. Yuan, CN103193919B. (2013).

Google Scholar

[15] L. R. Saint, A. Manseri, B. Ameduri, B. Lebret and P. Vignane, Synthesis and properties of novel fluorotelechelic macrodiols containing vinylidene fluoride, hexafluoropropene and chlorotrifluoroethylene, Macromol. 35 (2002) 1524-1536.

DOI: 10.1021/ma011376f

Google Scholar

[16] A. Taguet, B. Ameduri, B. Boutevin, Grafting of commercially available amines bearing aromatic rings onto poly (vinylidene-co-hexafluoropropene) copolymers, J. Polym. Sci., Part A: Polym. Chem. 44 (2006) 1855-1868.

DOI: 10.1002/pola.21295

Google Scholar

[17] G. J. Ross, J. F. Wattsa, M. P. Hill, P. Morrissey, Surface modification of poly (vinylidene fluoride) by alkaline treatment 1. The degradation mechanism, Polym. 41 (2000) 1685-1696.

DOI: 10.1016/s0032-3861(99)00343-2

Google Scholar

[18] S. R. Gondi, A. P. Vogt, B. S. Sumerlin, Versatile pathway to functional telechelics via RAFT polymerization and click chemistry, Macromol. 40 (2007) 474-481.

DOI: 10.1021/ma061959v

Google Scholar

[19] P. Hinksman, D. H. Isaac, P. Morrissey, Environmental stress cracking of poly (vinylidene fluoride) and welds in alkaline solutions, Polym. Degrad. Stab. 68 (2000) 299-305.

DOI: 10.1016/s0141-3910(00)00015-x

Google Scholar

[20] M. Pianca, E. Barchiesi, G. Esposto, S. Radice, End groups in fluoropolymers, J. Fluorine. Chem. 95 (1999) 71-84.

DOI: 10.1016/s0022-1139(98)00304-2

Google Scholar