RETRACTED: First-Principles Study of Advanced Nuclear Materials: Defect Behavior and Fission Products in U-Si System

Retracted:

The paper has been retracted due to technical issue by authors' request.

More data on the defective structures, especially those containing fission products, are required in order to consider the volume variation of the system.
Retracted: 2017-09-04

Article Preview

Abstract:

Uranium silicides are envisaged as potential nuclear materials for the next generation. U3Si is featured by the high actinide density and the better thermal conductivity relative to UO2. To properly and safely utilize nuclear materials, it is crucial to understand their chemical and physical properties. First-principles in theory is mostly used to analyze the point defect structures for uranium silicides nuclear fuels. The lattice parameters of U3Si and USi2 are calculated and the stability of different types of point defects are predicted by their formation energies. The results show that silicon vacancies are more prone to be produced than uranium vacancies in β-USi2 matrix. The most favorable sites of fission products are determined in this work as well. According to the current data, rare earth elements cerium and neodymium are found to be more stable than alkaline earth metals strontium and barium in a given nuclear matrix. It is also determined that in USi2 crystal lattice fission products tend to be stabilized in uranium substitution sites, while they are likely to form precipitates from the U3Si matrix. It is expected that this work may provide new insight into the mechanism for structural evolutions of silicide nuclear materials in a reactor as well as to provide valuable clues for fuel designers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

134-140

Online since:

August 2017

Export:

Share:

Citation:

* - Corresponding Author

[1] J. Bates, High Temperature Thermal Conductivity of Round Robin Uranium Dioxide, US Atomic Energy Commission, (1970).

DOI: 10.2172/4084378

Google Scholar

[2] K. Remschnig, T. Le Bihan, H. Noel, P. Rogl, Structural chemistry and magnetic behavior of binary uranium silicides, Solid State Chem. 97 (1992) 391.

DOI: 10.1016/0022-4596(92)90048-z

Google Scholar

[3] G. Kimmel, B. Sharon, M. Rosen, Structure and phase stability of uranium--silicon U3Si at low temperatures, Acta Crystallogr B, 36 (1989) 2386.

Google Scholar

[4] P. Villars, L. D. Calvert, PearsonÕs Handbook of Crystallographic Data for Intermetallic Phases, ASM, MaterialsPark, OH, (1991).

Google Scholar

[5] S. F. Pugh, Swelling in alpha uranium due to irradiation, J. Nucl. Mater. 4 (1961) 177-199.

Google Scholar

[6] B. T. Massalski, Binary Alloy Phase Diagrams, Materials Park, (1990) 1485.

Google Scholar

[7] C. Jegou, S. Peuget, J. F. Lucchini, C. Corbel, Identification of the mechanism limiting the alteration of clad spent fuel segments in aerated carbonated groundwater, J. Nucl. Mater. J. Nucl. Mater. 362 (2004) 144-156.

DOI: 10.1016/j.jnucmat.2004.01.008

Google Scholar

[8] D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B, 41 (1990) 7892–7895.

DOI: 10.1103/physrevb.41.7892

Google Scholar

[9] M. D. Segall, J. D. L. Philip, M. J. Probert, C. J. First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys.: Condens, Matter 14 (2002) 2717.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[10] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[11] T. H. Fischer and J. Almlof, General methods for geometry and wave function optimization, J. Phys. Chem. 96 (1992) 9768.

DOI: 10.1021/j100203a036

Google Scholar

[12] M. Freyss, First-principles study of uranium carbide: Accommodation of point defects and of helium, xenon, and oxygen impurities, Phys. Rev. B, 81 (2010) 014101.

DOI: 10.1103/physrevb.81.014101

Google Scholar

[13] H. J. Monkhorst, J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13 (1976) 5188–5192.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[14] J. Yang, J. P. Long, L. J. Yang, D. M. Li, First-principles investigations of the physical properties of binary uranium silicide alloys, J. Nucl. Mater. 443 (2013) 195.

DOI: 10.1016/j.jnucmat.2013.07.022

Google Scholar

[15] M. J. Mehl, B. M. Klein, and D. A. Papaconstantopoulos, in Intermetallic Compounds: Principles and Practice. Westbrook and R. L. Fleischer, (1965).

Google Scholar

[16] M. Jafari, N. Zarifi, M. Nobakhti, A. Jahandoost, Pseudopotential calculation of the bulk modulus and phonon dispersion of the bcc and hcp structures of titanium, Phys. Scr. 83 (2011) 065603.

DOI: 10.1088/0031-8949/83/06/065603

Google Scholar

[17] M. Rosen, Y. Gefen, G. Kimmel, A. Halwany, Transformation twins and the elastic properties of U3Si at low temperatures Phil. Mag. 28 (1973) 1007.

DOI: 10.1080/14786437308220964

Google Scholar

[18] P. L. Blum, G. Silvestre, H. Vaugoyeau, On the binary system uranium-uranium dioxide, Compt. Rend. Acad. Sci. 260 (1965) 5538.

Google Scholar

[19] P. A. G. O'Hare et al. Thermodynamics of Nuclear Materials, IAEA, 2 (1975) 439–453.

Google Scholar

[20] P. Gross, C. Hayman, H. Clayton, Thermodynamics of Nuclear Materials, IAEA, (1962) 653–665.

Google Scholar

[21] T. Petit, C. Lemaignan, F. Jollet, B Bigot, Point defects in uranium dioxide Phil. Mag. B, 77(1998) 779.

DOI: 10.1080/13642819808214834

Google Scholar

[22] H. Vaugoyeau, L. Lombard, J. Morlevat, Contribution to the study of the equilibrium diagram uranium silicon, J. Nucl. Mater. 39 (1971) 323–329.

DOI: 10.1016/0022-3115(71)90153-x

Google Scholar

[23] M. Freyss, Point defects in uranium dioxide: Ab initio pseudopotential approach in the generalized gradient approximation, J. Nucl. Mater. 347(2005) 44-51.

DOI: 10.1016/j.jnucmat.2005.07.003

Google Scholar

[24] T. Wang, N. Qiu, X. Wen,Y. First-principles investigations on the electronic structures of U3Si2, J. Nucl. Mater. 469 (2016) 194.

Google Scholar

[25] E. Bevillon, R. Ducher, M. Barrachin and Roland Dubourg, First-principles study of the stability of fission products in uranium monocarbide, J. Nucl. Mater. 426 (2012) 189.

DOI: 10.1016/j.jnucmat.2012.03.014

Google Scholar

[26] G. Brillant, A. Pasturel, Study of Ba and Zr stability in UO2±x by density functional calculations, Phys. Rev. B, 77 (2008) 184110.

Google Scholar

[27] F. Gupta, G. Brillant, A. Pasturel, Correlation effects and energetics of point defects in uranium dioxide: a first principle investigation, Philos. Mag. 87 (2007) 2561.

DOI: 10.1080/14786430701235814

Google Scholar

[28] M. R. Finlay, Irradiation behaviour of uranium silicide compounds, J. Nucl. Mater. 325 (2004) 118–128.

Google Scholar