Low Frequency Dielectric Relaxation and Charge Transport in Bi12TiO20 Photorefractive Sillenite Crystals

Article Preview

Abstract:

Features of processes of a dielectric relaxation and charge transport in photorefractive sillenite crystals Bi12TiO20 at low frequency range are investigated. It was found that the dispersion of dielectric permittivity ε' in crystals Bi12TiO20 is characterized by its growth with lowering frequency and rising temperature. This behaviour may be related to existence of dipole-relaxation polarization mechanism. The frequency dependence of dielectric loss tgδ reveals the existence of low frequency relaxation peaks in the studied temperature range. From the conductivity dependence on the frequency and temperature it was found that conductivity σ increases as frequency increases in the low frequency range. The observed dependence σ(ω)≈Аωs indicates that transport mechanism is due to hopping of carriers via localized electron states. The charge transport is thermally activated process in which activation energy Ea = (0.82±0.03) eV.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

163-167

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Lanfredi, M. A. Nobre, Conductivity mechanism analysis at high temperature in bismuth titanate: A single crystal with sillenite-type structure, Appl. Phys. Lett. 86(8) (2005) 081916.

DOI: 10.1063/1.1869542

Google Scholar

[2] S. Lanfredi, J. F. Carvalho, and A. C. Hernandes, Electric and dielectric properties of Bi12TiO20 single crystals, J. Appl. Phys. 88 (1) (2000) 283-287.

DOI: 10.1063/1.373654

Google Scholar

[3] R. A. Castro, N. I. Anisimova, G. A. Bordovsky, V. A. Bordovsky, Correlation between bismuth concentration and distribution of relaxators in As2Se3(Bi)x layers, J. Non-Crystalline Solids, 352(9) (2006) 1560-1562.

DOI: 10.1016/j.jnoncrysol.2006.01.031

Google Scholar

[4] N. I. Anisimova, V. A. Bordovsky, G. I. Grabko, R. A. Castro, Features of the charge transfer in structures based on thin layers of bismuth-modified arsenic, Semiconductors, 44(8) (2010) 1004-1007.

DOI: 10.1134/s1063782610080075

Google Scholar

[5] V. T. Avanesyan, G. A. Bordovskii, R. A. Castro, Relaxation dark currents in As-Se glasses, Glass Phys. Chem. 26(3) (2000) 257-259.

DOI: 10.1007/bf02738293

Google Scholar

[6] R. H. Chen, R. J. Wang, T. Chen, C. S. Shern, Studies on the dielectric properties and structural phase transition of K2SO4 crystal, J. Phys. Chem. Solids, 61(4) (2005) 519-527.

Google Scholar

[7] L. Sirdeshmukh, K. Krishna Kumar, S. B. Laxaman, A. R. Krishna, G. Sathaiah, Dielectric properties and electrical conduction in yttrium iron garnet (YIG), Bull. Mater. Sci. 21(3) (1998) 219-226.

DOI: 10.1007/bf02744973

Google Scholar

[8] R. P. Mahajan, K. K. Patankar, M. B. Kothale, S. A. Patil, Conductivity, dielectric behavior and magnetoelectric effect in copper ferrite-barium titanate composites, Bull. Mater. Sci. 23(4) (2000) 273-279.

DOI: 10.1007/bf02720082

Google Scholar

[9] B. Lal, S. K. Khosa, R. Tickoo, K. K. Bamzai, P. N. Kotru, Dielectric characteristics of melt grown doped KMgF 3crystals, Mater. Chem. Phys. 83(1) (2004) 158-168.

DOI: 10.1016/j.matchemphys.2003.09.011

Google Scholar

[10] K. Amarendra Singh, T. C. Goel, R. G. Mendiratta, P. Chandra, Dielectric properties of Mn-substituted Ni-Zn ferrites, J. Appl. Phys. 91(10) (2002) 6626-6629.

DOI: 10.1063/1.1470256

Google Scholar

[11] S. N. Mustafaeva, Dielectric properties of TlGa1–xFexSe2 single crystals in the alternate electric fields, J. Radioelectron. 5 (2008) 1-11.

Google Scholar

[12] M. Pollak, T. Geballe, Low-Frequency Conductivity Due to Hopping Processes in Silicon, Phys. Rev. 122 (1961) 1742.

DOI: 10.1103/physrev.122.1742

Google Scholar

[13] V. Marinova, V. Sainov, S.H. Lin, K.Y. Hsu. DC and AC conductivity measurements of Bi12TiO20 photorefractive crystals doped with Ag, P, Cu and Cd, Jpn. J. Appl. Phys. Vol 41 (2002), pp.1860-1863.

DOI: 10.1143/jjap.41.1860

Google Scholar