[1]
A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal Halide Perovskites as Visible Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 131 (2009) 6050-6051.
DOI: 10.1021/ja809598r
Google Scholar
[2]
Z. Cheng and J. Lin, Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering, Crys. Eng. Comm. 12 (2010) 2646-2662.
DOI: 10.1039/c001929a
Google Scholar
[3]
G. Hodes, Perovskite-Based Solar Cells, Sci. 342 (2013) 317-318.
Google Scholar
[4]
S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaon, M. J. P. Alcocer, T. Leijtems, L. M. Herz, A. Petrozza and H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Sci. 342 (2013).
DOI: 10.1126/science.1243982
Google Scholar
[5]
G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar and T. C. Sum, Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3, Sci. 342 (2013) 344-347.
DOI: 10.1126/science.1243167
Google Scholar
[6]
H. S. Kim, S. H. Im and N. G. Park, Organolead Halide Perovskite, New Horizons in Solar Cell Research, J. Phys. Chem. C, 118 (2014) 5615-5625.
DOI: 10.1021/jp409025w
Google Scholar
[7]
V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero and J. Bisquert, General Working Principles of CH3NH3PbX3 Perovskite Solar Cells, Nano Lett. 14 (2014) 888-893.
DOI: 10.1021/nl404252e
Google Scholar
[8]
H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski and W. Zhang, Anomalous Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett. 5 (2014) 1511-1515.
DOI: 10.1021/jz500113x
Google Scholar
[9]
M. A. Green, A. Ho-Baillie and H. J. Snaith, The Emergence of Perovskite Solar Cells, Nature Photonics, 8 (2014) 506-514.
DOI: 10.1038/nphoton.2014.134
Google Scholar
[10]
Z. Chen, H. Li, Y. Tang, X. Huang, D. Ho and C. S. Lee, Shape-Controlled Synthesis of Organolead Halide Perovskite Nanocrystals and their Tunable Optical Absorption, Mater. Res. Express, 1 (2014) p.015034.
DOI: 10.1088/2053-1591/1/1/015034
Google Scholar
[11]
B. Liu and E. S. Aydil, Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells, J. Am. Chem. Soc. 131 (2009) 3985-3990.
DOI: 10.1021/ja8078972
Google Scholar
[12]
M. M. Lee, J. Tenscher, T. Miyasaka, T. M. Murakami and H. J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Sci. 338 (2012) 643-647.
DOI: 10.1126/science.1228604
Google Scholar
[13]
H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel and N. G. Park, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Sci. Rep. 2 (2012).
DOI: 10.1038/srep00591
Google Scholar
[14]
J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells, Nano Lett. 13 (2013) 1764-1769.
DOI: 10.1021/nl400349b
Google Scholar
[15]
J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel and S. I. Seok, Efficient Inorganic-Organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors, Nature Photonic, 7 (2013).
DOI: 10.1038/nphoton.2013.80
Google Scholar
[16]
J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells, Nature, 499 (2013) 316-319.
DOI: 10.1038/nature12340
Google Scholar
[17]
N. G. Park, Organometal Perovskite Light Absorbers toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell, J. Phys. Chem. Lett. 4 (2013) 2423-2429.
DOI: 10.1021/jz400892a
Google Scholar
[18]
H. J. Snaith, Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells, J. Phys. Chem. Lett. 4 (2013) 3623-3630.
DOI: 10.1021/jz4020162
Google Scholar
[19]
J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cells, Energy Environ. Sci. 6 (2013) 1739-1743.
DOI: 10.1039/c3ee40810h
Google Scholar
[20]
J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan and S. Yang, All-Solid-State Hybrid Solar Cells Based on a New Organometal Halide Perovskite Sensitizer and One-Dimensional TiO2 Nanowire Arrays, Nanoscale, 5 (2013) 3245-3248.
DOI: 10.1039/c3nr00218g
Google Scholar
[21]
C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith and L. M. Herz, High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites, Adv. Maters. 26 (2014) 1584-1589.
DOI: 10.1002/adma.201305172
Google Scholar
[22]
J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith and R. J. Nicholas, Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 nanocomposites in Thin Film Perovskite Solar Cells, Nano Lett. 14 (2014).
DOI: 10.1021/nl403997a
Google Scholar
[23]
K. Wojciechowski, M. Salida, T. Leijtens, A. Abate and H. J. Snaith, Sub-150°C Processed Meso-Superstructured Perovskite Solar Cells with Enhanced Efficiency, Energy Environ. Sci. 7 (2014) 1142-1147.
DOI: 10.1039/c3ee43707h
Google Scholar
[24]
A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Grätzel and J. E. Moser, Unravelling the Mechanism of Photoinduced Charge Transfer Processes in Lead Iodide Perovskite Solar Cells, Nature Photonics, 8 (2014).
DOI: 10.1038/nphoton.2013.374
Google Scholar
[25]
P. Gao, M. Grätzel and M. K. Nazeeruddin, Organohalide Lead Perovskite for Photvoltaic Applications, Energy Environ. Sci. 7 (2014) 2448-2463.
DOI: 10.1039/c4ee00942h
Google Scholar
[26]
S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo and S. I. Seok, Voltage Output of Efficient Perovskite Solar Cells with High Open-Circuit Voltage and Fill Factor, Energy Environ. Sci. 7 (2014) 2614-2618.
DOI: 10.1039/c4ee00762j
Google Scholar
[27]
J. Seo, S. Park, Y. C. Kim, N. J. Jeon, J. H. Noh, S. C. Yoon and S. I. Seok, Benefits of very Thin PCBM and LiF Layers or Solution-Processed p-i-n Perovskite Solar Cells, Energy Environ. Sci. 7 (2014) 2642-2646.
DOI: 10.1039/c4ee01216j
Google Scholar
[28]
P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin and M. Grätzel, Inorganic Hole Conductor-Based Lead Halide Perovskite Solar Cells with 12. 4% Conversion Efficiency, Nature Comm. 5 (2014) p.3834.
DOI: 10.1038/ncomms4834
Google Scholar
[29]
J. H. Im, I. H. Jang, N. Pellet, M. Grätzel and N. G. Park, Growth of CH3NH3PbI3 Cuboids with Controlled Size for High-Efficiency Perovskite Solar Cells, Nat. Nanotechnol. 9 (2014) 927-932.
DOI: 10.1038/nnano.2014.181
Google Scholar
[30]
A. Dualeh, P. Gao, S. I. Seok, M. K. Nazeeruddin and M. Grätzel, Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvester, Chem. Mater. 26 (2014) 6160-6164.
DOI: 10.1021/cm502468k
Google Scholar
[31]
M. Liu, M. B. Johnston and H. J. Snaith, Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition, Nature, 501 (2013) 395-398.
DOI: 10.1038/nature12509
Google Scholar
[32]
O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Grätzel, M. K. Nazeeruddin and H. J. Bolink, Perovskite Solar Cells Employing Organic Charge-Transport Layers, Nature Photonics, 8 (2014) 128-132.
DOI: 10.1038/nphoton.2013.341
Google Scholar
[33]
Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li and Y. Yang, Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process, J. Am. Chem. Soc. 136 (2014) 622-625.
DOI: 10.1021/ja411509g
Google Scholar
[34]
G. Niu, W. Li, F. Meng, L. Wang, H. Dong and Y. Qiu, Study on the stability of CH3NH3PbI3 films and the effect of post modification by aluminum oxide in all-solid-state hybrid solar cells, J. Maters. Chem. A, 2 (2014) 705-710.
DOI: 10.1039/c3ta13606j
Google Scholar
[35]
S. M. George, Atomic Layer Deposition: An Overview, Chem. Rev. 110 (2010) 111-131.
Google Scholar