The Stability Effect of Atomic Layer Deposition (ALD) of Al2O3 on CH3NH3PbI3 Perovskite Solar Cell Fabricated by Vapor Deposition

Article Preview

Abstract:

The perovskite solar cells (PSCs) with Al2O3 passivation layer were fabricated and characterized. The PSC have some advantages of easier and cheaper fabrication process than that of conventional Si solar cells, III-V compound semiconductor solar cells, and organic solar cells. The perovskite light harvester, CH3NH3PbI3, was deposited by vapor deposition on [compact TiO2 / F-doped tin oxide (FTO) / glass]. The advantage of vapor deposition over solution process is expected to be able to offer the thin film with smoother surface over larger area. Then, Al2O3 passivation layer was deposited by atomic layer deposition (ALD) on the CH3NH3PbI3 light harvester. Al2O3 passivation layer was expected to prevent the CH3NH3PbI3 light harvester from oxidation and improve the solar cell efficiency, and ALD has been one of the most effective methods to deposit Al2O3 thin film for last 25 years. The atomic layer deposited Al2O3 layer thickness was optimized from the solar cell characterization. The optimized power conversion efficiency (PCE) and Al2O3 thickness were ~8.0 % and ~10.0 nm, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

156-162

Citation:

Online since:

August 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal Halide Perovskites as Visible Light Sensitizers for Photovoltaic Cells, J. Am. Chem. Soc. 131 (2009) 6050-6051.

DOI: 10.1021/ja809598r

Google Scholar

[2] Z. Cheng and J. Lin, Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering, Crys. Eng. Comm. 12 (2010) 2646-2662.

DOI: 10.1039/c001929a

Google Scholar

[3] G. Hodes, Perovskite-Based Solar Cells, Sci. 342 (2013) 317-318.

Google Scholar

[4] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaon, M. J. P. Alcocer, T. Leijtems, L. M. Herz, A. Petrozza and H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Sci. 342 (2013).

DOI: 10.1126/science.1243982

Google Scholar

[5] G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. Mhaisalkar and T. C. Sum, Long-Range Balanced Electron- and Hole-Transport Lengths in Organic-Inorganic CH3NH3PbI3, Sci. 342 (2013) 344-347.

DOI: 10.1126/science.1243167

Google Scholar

[6] H. S. Kim, S. H. Im and N. G. Park, Organolead Halide Perovskite, New Horizons in Solar Cell Research, J. Phys. Chem. C, 118 (2014) 5615-5625.

DOI: 10.1021/jp409025w

Google Scholar

[7] V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero and J. Bisquert, General Working Principles of CH3NH3PbX3 Perovskite Solar Cells, Nano Lett. 14 (2014) 888-893.

DOI: 10.1021/nl404252e

Google Scholar

[8] H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. W. Wang, K. Wojciechowski and W. Zhang, Anomalous Hysteresis in Perovskite Solar Cells, J. Phys. Chem. Lett. 5 (2014) 1511-1515.

DOI: 10.1021/jz500113x

Google Scholar

[9] M. A. Green, A. Ho-Baillie and H. J. Snaith, The Emergence of Perovskite Solar Cells, Nature Photonics, 8 (2014) 506-514.

DOI: 10.1038/nphoton.2014.134

Google Scholar

[10] Z. Chen, H. Li, Y. Tang, X. Huang, D. Ho and C. S. Lee, Shape-Controlled Synthesis of Organolead Halide Perovskite Nanocrystals and their Tunable Optical Absorption, Mater. Res. Express, 1 (2014) p.015034.

DOI: 10.1088/2053-1591/1/1/015034

Google Scholar

[11] B. Liu and E. S. Aydil, Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells, J. Am. Chem. Soc. 131 (2009) 3985-3990.

DOI: 10.1021/ja8078972

Google Scholar

[12] M. M. Lee, J. Tenscher, T. Miyasaka, T. M. Murakami and H. J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites, Sci. 338 (2012) 643-647.

DOI: 10.1126/science.1228604

Google Scholar

[13] H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel and N. G. Park, Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%, Sci. Rep. 2 (2012).

DOI: 10.1038/srep00591

Google Scholar

[14] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells, Nano Lett. 13 (2013) 1764-1769.

DOI: 10.1021/nl400349b

Google Scholar

[15] J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel and S. I. Seok, Efficient Inorganic-Organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors, Nature Photonic, 7 (2013).

DOI: 10.1038/nphoton.2013.80

Google Scholar

[16] J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, Sequential Deposition as a Route to High-Performance Perovskite-Sensitized Solar Cells, Nature, 499 (2013) 316-319.

DOI: 10.1038/nature12340

Google Scholar

[17] N. G. Park, Organometal Perovskite Light Absorbers toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell, J. Phys. Chem. Lett. 4 (2013) 2423-2429.

DOI: 10.1021/jz400892a

Google Scholar

[18] H. J. Snaith, Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells, J. Phys. Chem. Lett. 4 (2013) 3623-3630.

DOI: 10.1021/jz4020162

Google Scholar

[19] J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cells, Energy Environ. Sci. 6 (2013) 1739-1743.

DOI: 10.1039/c3ee40810h

Google Scholar

[20] J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan and S. Yang, All-Solid-State Hybrid Solar Cells Based on a New Organometal Halide Perovskite Sensitizer and One-Dimensional TiO2 Nanowire Arrays, Nanoscale, 5 (2013) 3245-3248.

DOI: 10.1039/c3nr00218g

Google Scholar

[21] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith and L. M. Herz, High Charge Carrier Mobilities and Lifetimes in Organolead Trihalide Perovskites, Adv. Maters. 26 (2014) 1584-1589.

DOI: 10.1002/adma.201305172

Google Scholar

[22] J. T. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith and R. J. Nicholas, Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 nanocomposites in Thin Film Perovskite Solar Cells, Nano Lett. 14 (2014).

DOI: 10.1021/nl403997a

Google Scholar

[23] K. Wojciechowski, M. Salida, T. Leijtens, A. Abate and H. J. Snaith, Sub-150°C Processed Meso-Superstructured Perovskite Solar Cells with Enhanced Efficiency, Energy Environ. Sci. 7 (2014) 1142-1147.

DOI: 10.1039/c3ee43707h

Google Scholar

[24] A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Grätzel and J. E. Moser, Unravelling the Mechanism of Photoinduced Charge Transfer Processes in Lead Iodide Perovskite Solar Cells, Nature Photonics, 8 (2014).

DOI: 10.1038/nphoton.2013.374

Google Scholar

[25] P. Gao, M. Grätzel and M. K. Nazeeruddin, Organohalide Lead Perovskite for Photvoltaic Applications, Energy Environ. Sci. 7 (2014) 2448-2463.

DOI: 10.1039/c4ee00942h

Google Scholar

[26] S. Ryu, J. H. Noh, N. J. Jeon, Y. C. Kim, W. S. Yang, J. Seo and S. I. Seok, Voltage Output of Efficient Perovskite Solar Cells with High Open-Circuit Voltage and Fill Factor, Energy Environ. Sci. 7 (2014) 2614-2618.

DOI: 10.1039/c4ee00762j

Google Scholar

[27] J. Seo, S. Park, Y. C. Kim, N. J. Jeon, J. H. Noh, S. C. Yoon and S. I. Seok, Benefits of very Thin PCBM and LiF Layers or Solution-Processed p-i-n Perovskite Solar Cells, Energy Environ. Sci. 7 (2014) 2642-2646.

DOI: 10.1039/c4ee01216j

Google Scholar

[28] P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M. K. Nazeeruddin and M. Grätzel, Inorganic Hole Conductor-Based Lead Halide Perovskite Solar Cells with 12. 4% Conversion Efficiency, Nature Comm. 5 (2014) p.3834.

DOI: 10.1038/ncomms4834

Google Scholar

[29] J. H. Im, I. H. Jang, N. Pellet, M. Grätzel and N. G. Park, Growth of CH3NH3PbI3 Cuboids with Controlled Size for High-Efficiency Perovskite Solar Cells, Nat. Nanotechnol. 9 (2014) 927-932.

DOI: 10.1038/nnano.2014.181

Google Scholar

[30] A. Dualeh, P. Gao, S. I. Seok, M. K. Nazeeruddin and M. Grätzel, Thermal Behavior of Methylammonium Lead-Trihalide Perovskite Photovoltaic Light Harvester, Chem. Mater. 26 (2014) 6160-6164.

DOI: 10.1021/cm502468k

Google Scholar

[31] M. Liu, M. B. Johnston and H. J. Snaith, Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition, Nature, 501 (2013) 395-398.

DOI: 10.1038/nature12509

Google Scholar

[32] O. Malinkiewicz, A. Yella, Y. H. Lee, G. M. Espallargas, M. Grätzel, M. K. Nazeeruddin and H. J. Bolink, Perovskite Solar Cells Employing Organic Charge-Transport Layers, Nature Photonics, 8 (2014) 128-132.

DOI: 10.1038/nphoton.2013.341

Google Scholar

[33] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li and Y. Yang, Planar Heterojunction Perovskite Solar Cells via Vapor-Assisted Solution Process, J. Am. Chem. Soc. 136 (2014) 622-625.

DOI: 10.1021/ja411509g

Google Scholar

[34] G. Niu, W. Li, F. Meng, L. Wang, H. Dong and Y. Qiu, Study on the stability of CH3NH3PbI3 films and the effect of post modification by aluminum oxide in all-solid-state hybrid solar cells, J. Maters. Chem. A, 2 (2014) 705-710.

DOI: 10.1039/c3ta13606j

Google Scholar

[35] S. M. George, Atomic Layer Deposition: An Overview, Chem. Rev. 110 (2010) 111-131.

Google Scholar